Homogenization of non-stationary Stokes equations with viscosity in a perforated domain

被引:13
作者
Sandrakov, GV
机构
关键词
D O I
10.1070/IM1997v061n01ABEH000107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Theorems are proved about the asymptotic behaviour of solutions of an initial boundary-value problem for non-stationary Stokes equations in a periodic perforated domain with a small period epsilon. The viscosity coefficient nu of the equations is assumed to be a positive parameter satisfying one of the following three conditions: nu/epsilon(2) --> infinity, 1, 0 as epsilon --> 0. We also consider the case of degenerate Stokes equations with zero viscosity coefficient and the case of Navier-Stokes equations when the viscosity coefficient is not too small.
引用
收藏
页码:113 / 141
页数:29
相关论文
共 22 条
[1]  
Allaire G., 1989, ASYMPTOTIC ANAL, V2, P203, DOI [10.3233/ASY-1989-2302, DOI 10.3233/ASY-1989-2302]
[2]  
Allaire G., 1992, PROGR PARTIAL DIFFER
[3]  
ARANOVICH MS, 1964, USP MAT NAUK, V19, P53
[4]  
Bakhvalov N, 1984, Homogenization: averaging processes in periodic media
[5]  
Berezanskii Yu. M., 1965, EXPANSIONS EIGENFUNC
[6]  
BOGOVSKII ME, 1979, DOKL AKAD NAUK SSSR+, V248, P1037
[7]  
Edwards R.E., 1979, FOURIER SERIES MODER, VI
[8]  
LADYZHENSKAYA OA, 1970, MATH PROBLEMS DYNAMI
[9]  
LYUSTERNIK LA, 1982, BRIEF COURSE FUNCTIO
[10]  
MACCAMY RC, 1972, T AM MATH SOC, V164, P1