Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium

被引:281
作者
Jonak, C [1 ]
Nakagami, H
Hirt, H
机构
[1] Austrian Acad Sci, Gregor Mendel Inst Mol Plant Biol, A-1030 Vienna, Austria
[2] Univ Vienna, Bioctr, Inst Microbiol & Genet, A-1030 Vienna, Austria
关键词
D O I
10.1104/pp.104.045724
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Excessive amounts of heavy metals adversely affect plant growth and development. Whereas some regions naturally contain high levels of heavy metals, anthropogenic release of heavy metals into the environment continuously increases soil contamination. The presence of elevated levels of heavy metal ions triggers a wide range of cellular responses including changes in gene expression and synthesis of metal-detoxifying peptides. To elucidate signal transduction events leading to the cellular response to heavy metal stress we analyzed protein phosphorylation induced by elevated levels of copper and cadmium ions as examples for heavy metals with different physiochemical properties and functions. Exposure of alfalfa (Medicago sativa) seedlings to excess copper or cadmium ions activated four distinct mitogen-activated protein kinases (MAPKs): SIMK, MMK2, MMK3, and SAMK Comparison of the kinetics of MAPK activation revealed that SIMK, MMK2, MMK3, and SAMK are very rapidly activated by copper ions, while cadmium ions induced delayed MAPK activation. In protoplasts, the MAPK kinase SIMKK specifically mediated activation of SIMK and SAMK but not of MMK2 and MMK3. Moreover, SIMKK only conveyed MAPK activation by CuCl2 but not by CdCl2. These results suggest that plants respond to heavy metal stress by induction of several distinct MAPK pathways and that excess amounts of copper and cadmium ions induce different cellular signaling mechanisms in roots.
引用
收藏
页码:3276 / 3283
页数:8
相关论文
共 43 条
[1]   Rice MAPKs [J].
Agrawal, GK ;
Iwahashi, H ;
Rakwal, R .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 302 (02) :171-180
[2]   Metal toxicity in yeasts and the role of oxidative stress [J].
Avery, SV .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 49, 2001, 49 :111-142
[3]   A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division [J].
Bögre, L ;
Calderini, O ;
Binarova, P ;
Mattauch, M ;
Till, S ;
Kiegerl, S ;
Jonak, C ;
Pollaschek, C ;
Barker, P ;
Huskisson, NS ;
Hirt, H ;
Heberle-Bors, E .
PLANT CELL, 1999, 11 (01) :101-113
[4]  
Bogre L, 1997, PLANT CELL, V9, P75, DOI 10.1105/tpc.9.1.75
[5]   Mechanosensors in plants [J].
Bogre, L ;
Ligterink, W ;
HeberleBors, E ;
Hirt, H .
NATURE, 1996, 383 (6600) :489-490
[6]   Differential activation of four specific MAPK pathways by distinct elicitors [J].
Cardinale, F ;
Jonak, C ;
Ligterink, W ;
Niehaus, K ;
Boller, T ;
Hirt, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :36734-36740
[7]   Role of nicotianamine in the intracellular delivery of metals and plant reproductive development [J].
Takahashi, M ;
Terada, Y ;
Nakai, I ;
Nakanishi, H ;
Yoshimura, E ;
Mori, S ;
Nishizawa, NK .
PLANT CELL, 2003, 15 (06) :1263-1280
[8]   Molecular mechanisms of plant metal tolerance and homeostasis [J].
Clemens, S .
PLANTA, 2001, 212 (04) :475-486
[9]   Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis [J].
Cobbett, C ;
Goldsbrough, P .
ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 :159-182
[10]  
Degols G, 1996, MOL CELL BIOL, V16, P2870