Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field

被引:1485
作者
Shivakumar, Devleena [1 ]
Williams, Joshua [2 ]
Wu, Yujie [1 ]
Damm, Wolfgang [1 ]
Shelley, John [2 ]
Sherman, Woody [1 ]
机构
[1] Schrodinger Inc, New York, NY 10036 USA
[2] Schrodinger Inc, Portland, OR 97204 USA
关键词
EFFICIENT GENERATION; ATOMIC CHARGES; AM1-BCC MODEL; HYDRATION; SIMULATIONS; EXPLICIT; VALIDATION; NONPOLAR; CHAINS; STATE;
D O I
10.1021/ct900587b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The accurate prediction of protein ligand binding free energies is a primary objective in computer-aided drug design. The solvation free energy of a small molecule provides a surrogate to the desolvation of the ligand in the thermodynamic process of protein ligand binding. Here, we use explicit solvent molecular dynamics free energy perturbation to predict the absolute solvation free energies of a set of 239 small molecules, spanning diverse chemical functional groups commonly found in drugs and drug-like molecules. We also compare the performance of absolute solvation free energies obtained using the OPLS_2005 force field with two other commonly used small molecule force fields general AMBER force field (GAFF) with AM1-BCC charges and CHARMm-MSI with CHelpG charges. Using the OPLS_2005 force field, we obtain high correlation with experimental solvation free energies (R-2 = 0.94) and low average unsigned errors for a majority of the functional groups compared to AM1-BCC/GAFF or CHelpG/CHARMm-MS1. However, OPLS_2005 has errors of over 1.3 kcal/mol for certain classes of polar compounds. We show that predictions on these compound classes can be improved by using a semiempirical charge assignment method with an implicit bond charge correction.
引用
收藏
页码:1509 / 1519
页数:11
相关论文
共 60 条
[1]  
[Anonymous], 2002, Molecular Modeling and Simulation
[2]   Integrated modeling program, applied chemical theory (IMPACT) [J].
Banks, JL ;
Beard, HS ;
Cao, YX ;
Cho, AE ;
Damm, W ;
Farid, R ;
Felts, AK ;
Halgren, TA ;
Mainz, DT ;
Maple, JR ;
Murphy, R ;
Philipp, DM ;
Repasky, MP ;
Zhang, LY ;
Berne, BJ ;
Friesner, RA ;
Gallicchio, E ;
Levy, RM .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1752-1780
[3]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[4]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[5]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[6]   AVOIDING SINGULARITIES AND NUMERICAL INSTABILITIES IN FREE-ENERGY CALCULATIONS BASED ON MOLECULAR SIMULATIONS [J].
BEUTLER, TC ;
MARK, AE ;
VANSCHAIK, RC ;
GERBER, PR ;
VANGUNSTEREN, WF .
CHEMICAL PHYSICS LETTERS, 1994, 222 (06) :529-539
[7]  
Bowers K.J., 2006, ACM IEEE SC 2006 C S, P43, DOI [10.1109/SC.2006.54, DOI 10.1109/SC.2006.54]
[8]   The midpoint method for parallelization of particle simulations [J].
Bowers, Kevin J. ;
Dror, Ron O. ;
Shaw, David E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (18)
[9]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[10]   Model for aqueous solvation based on class IV atomic charges and first solvation shell effects [J].
Chambers, CC ;
Hawkins, GD ;
Cramer, CJ ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (40) :16385-16398