An Anaerobic-Type α-Ketoglutarate Ferredoxin Oxidoreductase Completes the Oxidative Tricarboxylic Acid Cycle of Mycobacterium tuberculosis

被引:58
作者
Baughn, Anthony D. [1 ,2 ]
Garforth, Scott J. [2 ]
Vilcheze, Catherine [1 ,2 ]
Jacobs, William R., Jr. [1 ,2 ]
机构
[1] Albert Einstein Coll Med, Howard Hughes Med Inst, Bronx, NY 10467 USA
[2] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10467 USA
基金
美国国家卫生研究院;
关键词
HYDROGENOBACTER-THERMOPHILUS TK-6; BACTEROIDES-FRAGILIS; ISOCITRATE LYASE; ESSENTIAL GENES; METABOLISM; ENZYME; DEHYDROGENASE; PYRUVATE; 2-OXOGLUTARATE; PERSISTENCE;
D O I
10.1371/journal.ppat.1000662
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms. Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable alpha-ketoglutarate (KG) dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO(2). Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating the presence of an alternate pathway that operates in the absence of beta-oxidation. Simultaneous disruption of KOR and the first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways from KG, one that functions concurrently with beta-oxidation (KOR-dependent), and one that functions in the absence of beta-oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization provides an advantage for growth in different environments within the host.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
ADAMS MWW, 1982, J BIOL CHEM, V257, P1791
[2]   Carbonic anhydrase (Nce103p):: an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure [J].
Aguilera, J ;
Van Dijken, JP ;
De Winde, JH ;
Pronk, JT .
BIOCHEMICAL JOURNAL, 2005, 391 :311-316
[3]   SYNTHESIS OF ALPHA-KETOGLUTARATE BY REDUCTIVE CARBOXYLATION OF SUCCINATE IN VEILLONELLA, SELENOMONAS, AND BACTEROIDES SPECIES [J].
ALLISON, MJ ;
ROBINSON, IM ;
BAETZ, AL .
JOURNAL OF BACTERIOLOGY, 1979, 140 (03) :980-986
[4]   Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes [J].
Argyrou, A ;
Blanchard, JS .
BIOCHEMISTRY, 2001, 40 (38) :11353-11363
[5]   Specialized transduction:: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M-bovis BCG and M-smegmatis [J].
Bardarov, S ;
Bardarov, S ;
Pavelka, MS ;
Sambandamurthy, V ;
Larsen, M ;
Tufariello, J ;
Chan, J ;
Hatfull, G ;
Jacobs, WR .
MICROBIOLOGY-SGM, 2002, 148 :3007-3017
[6]   A mitochondrial-like aconitase in the bacterium Bacteroides fragilis:: Implications for the evolution of the mitochondrial Krebs cycle [J].
Baughn, AD ;
Malamy, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4662-4667
[7]   GSMN-TB:: a web-based genome scale network model of Mycobacterium tuberculosis metabolism [J].
Beste, Dany J. V. ;
Hooper, Tracy ;
Stewart, Graham ;
Bonde, Bushan ;
Avignone-Rossa, Claudio ;
Bushell, Michael ;
Wheeler, Paul ;
Klamt, Steffen ;
Kierzek, Andrzej M. ;
McFadden, Johnjoe .
GENOME BIOLOGY, 2007, 8 (05)
[8]  
Chabrière E, 1999, NAT STRUCT BIOL, V6, P182
[9]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[10]   Ribonucleotide reduction in Mycobacterium tuberculosis:: Function and expression of genes encoding class Ib and class II ribonucleotide reductases [J].
Dawes, SS ;
Warner, DF ;
Tsenova, L ;
Timm, J ;
McKinney, JD ;
Kaplan, G ;
Rubin, H ;
Mizrahi, V .
INFECTION AND IMMUNITY, 2003, 71 (11) :6124-6131