Metric structure of random networks

被引:82
作者
Dorogovtsev, SN
Mendes, JFF
Samukhin, AN
机构
[1] Univ Porto, Fac Ciencias, Dept Fis, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, Ctr Fis Porto, P-4169007 Oporto, Portugal
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[4] Univ Aveiro, Dept Fis, P-3810093 Aveiro, Portugal
关键词
random geometry; random graphs; intervertex distance; connected components;
D O I
10.1016/S0550-3213(02)01119-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a consistent approach to the statistics of the shortest paths in random graphs with a given degree distribution. This approach goes further than a usual tree ansatz and rigorously accounts for loops in a network. We calculate the distribution of shortest-path lengths (intervertex distances) in these networks and a number of related characteristics for the networks with various degree distributions. We show that in the large network limit this extremely narrow intervertex distance distribution has a finite width while the mean intervertex distance grows with the size of a network. The size dependence of the mean intervertex distance is discussed in various situations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:307 / 338
页数:32
相关论文
共 28 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[3]   SUMMING OVER ALL GENERA FOR D-GREATER-THAN-1 - A TOY MODEL [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
PHYSICS LETTERS B, 1990, 244 (3-4) :403-412
[4]   SCALING IN 4-DIMENSIONAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J .
NUCLEAR PHYSICS B, 1995, 451 (03) :643-676
[5]  
Bekessy A., 1972, Studia Scientiarum Mathematicarum Hungarica, V7, P343
[6]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[7]  
BERG J, CONDMAT0205589
[8]   Condensation in the Backgammon model [J].
Bialas, P ;
Burda, Z ;
Johnston, D .
NUCLEAR PHYSICS B, 1997, 493 (03) :505-516
[9]   Appearance of mother universe and singular vertices in random geometries [J].
Bialas, P ;
Burda, Z ;
Petersson, B ;
Tabaczek, J .
NUCLEAR PHYSICS B, 1997, 495 (03) :463-476
[10]  
Bollobas B., 1980, Eur. J. Comb., V1, P311, DOI [DOI 10.1016/S0195-6698(80)80030-8, 10.1016/S0195-6698(80)80030-8]