Adhesion forces in conducting probe atomic force microscopy

被引:27
作者
Tivanski, AV [1 ]
Bemis, JE [1 ]
Akhremitchev, BB [1 ]
Liu, HY [1 ]
Walker, GC [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
关键词
D O I
10.1021/la026555k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper examines how the adhesion force between a conducting probe and a conductive surface influences the electrical properties of conductive polymers. Conducting probe atomic force microscopy (CP-AFM) was employed. When a voltage is applied between the sample and the tip, an attractive electrostatic capacitance force is added to the adhesion force. The tip-sample capacitance force in the CP-AFM of polythiophene monolayers is described through theoretical modeling and compared with experiment. Experiments were performed in insulating organic solvent that decreased the adhesion force by approximately 10 times relative to measurements in air. The results for the adhesion force measurements as a function of applied bias show good agreement with the theoretical prediction. On the basis of the dependence of the adhesion force versus applied bias and the current -voltage characteristics of polythiophene, we conclude that characterization of electrical properties of conducting polymers using CP-AFM at a desired force requires knowledge of the adhesion force.
引用
收藏
页码:1929 / 1934
页数:6
相关论文
共 43 条
[1]  
[Anonymous], POLYM NEWS
[2]   Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions [J].
Belaidi, S ;
Girard, P ;
Leveque, G .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (03) :1023-1030
[3]   ORGANIC POLYMERS BASED ON AROMATIC RINGS (POLYPARAPHENYLENE, POLYPYRROLE, POLYTHIOPHENE) - EVOLUTION OF THE ELECTRONIC-PROPERTIES AS A FUNCTION OF THE TORSION ANGLE BETWEEN ADJACENT RINGS [J].
BREDAS, JL ;
STREET, GB ;
THEMANS, B ;
ANDRE, JM .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (03) :1323-1329
[4]   Large on-off ratios and negative differential resistance in a molecular electronic device [J].
Chen, J ;
Reed, MA ;
Rawlett, AM ;
Tour, JM .
SCIENCE, 1999, 286 (5444) :1550-1552
[5]  
COOPER AR, 1989, DETERMINATION MOL WE, P263
[6]   Reproducible measurement of single-molecule conductivity [J].
Cui, XD ;
Primak, A ;
Zarate, X ;
Tomfohr, J ;
Sankey, OF ;
Moore, AL ;
Moore, TA ;
Gust, D ;
Harris, G ;
Lindsay, SM .
SCIENCE, 2001, 294 (5542) :571-574
[7]   Insertion, conductivity, and structures of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au{111} [J].
Cygan, MT ;
Dunbar, TD ;
Arnold, JJ ;
Bumm, LA ;
Shedlock, NF ;
Burgin, TP ;
Jones, L ;
Allara, DL ;
Tour, JM ;
Weiss, PS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (12) :2721-2732
[8]   Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes [J].
Dai, HJ ;
Wong, EW ;
Lieber, CM .
SCIENCE, 1996, 272 (5261) :523-526
[9]   ROOM-TEMPERATURE COULOMB-BLOCKADE FROM A SELF-ASSEMBLED MOLECULAR NANOSTRUCTURE [J].
DOROGI, M ;
GOMEZ, J ;
OSIFCHIN, R ;
ANDRES, RP ;
REIFENBERGER, R .
PHYSICAL REVIEW B, 1995, 52 (12) :9071-9077
[10]   Carbon nanotube quantum resistors [J].
Frank, S ;
Poncharal, P ;
Wang, ZL ;
de Heer, WA .
SCIENCE, 1998, 280 (5370) :1744-1746