Stability of U(1) spin liquids in two dimensions -: art. no. 214437

被引:266
作者
Hermele, M [1 ]
Senthil, T
Fisher, MPA
Lee, PA
Nagaosa, N
Wen, XG
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[4] Univ Tokyo, Dept Appl Phys, CREST, Tokyo 113, Japan
来源
PHYSICAL REVIEW B | 2004年 / 70卷 / 21期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.214437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We establish that spin liquids described in terms of gapless fermionic (Dirac) spinons and gapless U(1) gauge fluctuations can be stable in two dimensions, at least when the physical SU(2) spin symmetry is generalized to SU(N). Equivalently, we show that compact QED(3) has a deconfined phase for a large number of fermion fields, in the sense that monopole fluctuations can be irrelevant at low energies. A precise characterization is provided by an emergent global topological U(1) symmetry corresponding to the conservation of gauge flux. Beginning with an SU(N) generalization of the S=1/2 square-lattice Heisenberg antiferromagnet, we consider the pi-flux spin liquid and, via a systematic analysis of all operators, show that there are no relevant perturbations (in the renormalization-group sense) about the large-N spin-liquid fixed point, which is thus a stable phase. We provide a further illustration of this conclusion with an approximate renormalization-group calculation that treats the gapless fermions and the monopoles on an equal footing. This approach directly points out some of the flaws in the erroneous "screening" argument for the relevance of monopoles in compact QED(3).
引用
收藏
页码:1 / 9
页数:9
相关论文
共 33 条
[1]   LARGE-N LIMIT OF THE HEISENBERG-HUBBARD MODEL - IMPLICATIONS FOR HIGH-TC SUPERCONDUCTORS [J].
AFFLECK, I ;
MARSTON, JB .
PHYSICAL REVIEW B, 1988, 37 (07) :3774-3777
[2]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[3]   3-DIMENSIONAL O(N) THEORIES AT LARGE DISTANCES [J].
APPELQUIST, T ;
HEINZ, U .
PHYSICAL REVIEW D, 1981, 24 (08) :2169-2181
[4]   CRITICAL-BEHAVIOR IN (2+1)-DIMENSIONAL QED [J].
APPELQUIST, T ;
NASH, D ;
WIJEWARDHANA, LCR .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2575-2578
[5]   SPONTANEOUS CHIRAL-SYMMETRY BREAKING IN 3-DIMENSIONAL QED [J].
APPELQUIST, TW ;
BOWICK, M ;
KARABALI, D ;
WIJEWARDHANA, LCR .
PHYSICAL REVIEW D, 1986, 33 (12) :3704-3713
[6]   FUNCTIONAL INTEGRAL THEORIES OF LOW-DIMENSIONAL QUANTUM HEISENBERG MODELS [J].
AROVAS, DP ;
AUERBACH, A .
PHYSICAL REVIEW B, 1988, 38 (01) :316-332
[7]  
Borokhov V, 2002, J HIGH ENERGY PHYS
[8]   DYNAMIC MASS GENERATION IN QED3 AND THE 1/N EXPANSION [J].
CURTIS, DC ;
PENNINGTON, MR ;
WALSH, D .
PHYSICS LETTERS B, 1992, 295 (3-4) :313-319
[9]   Algebraic Fermi liquid from phase fluctuations:: "Topological" fermions, vortex "Berryons," and QED3 theory of cuprate superconductors -: art. no. 257003 [J].
Franz, M ;
Tesanovic, Z .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :257003-1
[10]   Non-compact QED3 with Nf ≥ 2 [J].
Hands, SJ ;
Kogut, JB ;
Strouthos, CG .
NUCLEAR PHYSICS B, 2002, 645 (1-2) :321-336