Quantitative comparison of approximate solution sets for bi-criteria optimization problems

被引:26
作者
Carlyle, WM [1 ]
Fowler, JW
Gel, ES
Kim, B
机构
[1] USN, Postgrad Sch, Operat Res Dept, Monterey, CA 93943 USA
[2] Arizona State Univ, Dept Ind Engn, Tempe, AZ 85287 USA
关键词
D O I
10.1111/1540-5915.02254
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We present the Integrated Preference Functional (IPF) for comparing the quality of proposed sets of near-pareto-optimal solutions to bi-criteria optimization problems. Evaluating the quality of such solution sets is one of the key issues in developing and comparing heuristics for multiple objective combinatorial optimization problems. The IPF is a set functional that, given a weight density function provided by a decision maker and a discrete set of solutions for a particular problem, assigns a numerical value to that solution set. This value can be used to compare the quality of different sets of solutions, and therefore provides a robust, quantitative approach for comparing different heuristic, a posteriori solution procedures for difficult multiple objective optimization problems. We provide specific examples of decision maker preference functions and illustrate the calculation of the resulting IPF for specific solution sets and a simple family of combined objectives.
引用
收藏
页码:63 / 82
页数:20
相关论文
共 34 条
[1]   Comparative studies in interactive multiple objective mathematical programming [J].
Aksoy, Y ;
Butler, TW ;
Minor, ED .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 89 (02) :408-422
[2]  
[Anonymous], 1999, EVOLUTIONARY ALGORIT
[3]  
Bransford J., 2000, PEOPLE LEARN, P1, DOI DOI 10.17226/9853
[4]  
Carlyle WM, 2001, LECT NOTES COMPUT SC, V1993, P472
[5]  
COELLO CAC, 1999, 1999 C EV COMP WASH, P3
[6]  
Czyzzak P., 1998, Journal of Multi-Criteria Decision Analysis, V7, P34, DOI [DOI 10.1002/(SICI)1099-1360(199801)7:13.0.CO
[7]  
2-6, DOI 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO
[8]  
2-6, 10.1002/(SICI)1099-1360(199801)7:13.0.CO
[9]  
2-6]
[10]   ANALYTICAL EVALUATION OF MULTICRITERIA HEURISTICS [J].
DANIELS, RL .
MANAGEMENT SCIENCE, 1992, 38 (04) :501-513