Distinct neuronal circuits mediate experience- dependent, non-associative osmotactic responses in Drosophila

被引:21
作者
Acevedo, Summer F. [1 ]
Froudarakis, Emmanuil I. [1 ]
Tsiorva, Anna-Angeliki [1 ]
Skoulakis, Efthimios M. C. [1 ]
机构
[1] Biomed Sci Res Ctr Alexander Fleming, Inst Mol Biol & Genet, Vari 16672, Greece
基金
美国国家科学基金会;
关键词
osmotaxis; olfactory conditioning; experience-dependent behaviors; cAMP; Drosophila;
D O I
10.1016/j.mcn.2006.11.011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Osmotactic responses can be modified in an experience-dependent manner and have been used to condition animals in negative or positive associative paradigms. Experience-dependent non-associative defects in avoidance of aversive odors were reported in Drosophila learning mutants. This prompted an examination of the contribution of the mushroom bodies and inner antenoglomerular tract, the two neuronal populations implicated in processing olfactory information to experience-dependent non-associative osmotactic responses. Silencing inner antenoglomerular tract synapses results in defective osmotaxis after experiencing a different odor, but not electric shock. Conversely, structural or functional perturbation of the mushroom bodies precipitates osmotactic deficits after prior experience of electric shock but not odors. These effects on osmotaxis are specific, long lasting and independent of the aversive or attractive properties of the odors. Deficient osmotactic responses only after electric shock stimulation were exhibited by mutants with altered cAMP levels, but all other mutants in genes preferentially expressed in the mushroom bodies responded normally. Our results suggest that the mushroom bodies and inner antenoglomerular tract are essential for normal osmotactic responses after prior stimulation with electric shock or another odor respectively. Finally, these experience-dependent non-associative paradigms are excellent methods of functionally ascertaining normal activity of the mushroom bodies and inner antenoglomerular tract in putative leaning and memory mutants. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:378 / 389
页数:12
相关论文
共 63 条
[1]  
CORFAS G, 1989, J NEUROSCI, V9, P56
[2]  
Crittenden JR, 1998, LEARN MEMORY, V5, P38
[3]  
DAUWALDER B, 1993, CONDITIONAL RESCUE D
[4]   Physiology and biochemistry of Drosophila learning mutants [J].
Davis, RL .
PHYSIOLOGICAL REVIEWS, 1996, 76 (02) :299-317
[5]   Olfactory learning [J].
Davis, RL .
NEURON, 2004, 44 (01) :31-48
[6]  
DAVIS RL, 1988, METHOD ENZYMOL, V159, P786
[7]   Olfactory memory formation in Drosophila:: From molecular to systems neuroscience [J].
Davis, RL .
ANNUAL REVIEW OF NEUROSCIENCE, 2005, 28 :275-302
[8]   Odor coding in the Drosophila antenna [J].
de Bruyne, M ;
Foster, K ;
Carlson, JR .
NEURON, 2001, 30 (02) :537-552
[9]   Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: A case study of the mushroom body miniature gene (mbm) [J].
deBelle, JS ;
Heisenberg, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9875-9880
[10]   ASSOCIATIVE ODOR LEARNING IN DROSOPHILA ABOLISHED BY CHEMICAL ABLATION OF MUSHROOM BODIES [J].
DEBELLE, JS ;
HEISENBERG, M .
SCIENCE, 1994, 263 (5147) :692-695