Tuning proton coupled electron transfer from tyrosine:: A competition between concerted and step-wise mechanisms

被引:65
作者
Sjödin, M
Ghanem, R
Polivka, T
Pan, J
Styring, S
Sun, LC
Sundström, V
Hammarström, L
机构
[1] Uppsala Univ, Dept Phys Chem, BMC, SE-75123 Uppsala, Sweden
[2] Lund Univ, Ctr Chem & Chem Engn, Dept Chem Phys, SE-22100 Lund, Sweden
[3] Uppsala Univ, Dept Mol Biomimet, SE-75236 Uppsala, Sweden
[4] Stockholm Univ, Arrhenius Lab, Dept Organ Chem, SE-10691 Stockholm, Sweden
关键词
D O I
10.1039/b407383e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intra-molecular, proton-coupled electron transfer from a tyrosine residue to covalently linked tris-bipyridine ruthenium(III) complexes in aqueous solution (Ru-III-TyrOH --> Ru-II-TyrO(.) + H+) is studied in two complexes. The Ru-III-TyrOH state is generated by laser flash-induced photo-oxidation in the presence of the electron acceptor methyl viologen. The reaction is shown to follow either a concerted electron transfer-deprotonation (CEP) mechanism or a step-wise mechanism with electron transfer followed by deprotonation (ETPT). The CEP is characterised by a pH-dependent rate constant, a large reorganisation energy (lambda = 1.4 eV at pH = 7) and a significant kinetic isotope effect: k(H)/k(D) = 1.5-3. We can explain the pH-dependence and the high lambda by the pH-dependent DeltaGdegrees' for proton release to bulk water, and by the additional reorganisation energy associated with the proton transfer coordinate (both internal and solvent), respectively. In the calculation of lambda from the temperature dependent rate constant, correction is made for the large entropy increase of the reaction (TDeltaS(rxn) approximate to0.41 eV at pH = 7 and T = 298 K). The step-wise ETPT mechanism on the other hand shows a pH-independent rate, a lower reorganisation energy and no kinetic isotope effect. We propose that our complexes can be used as models to understand proton-coupled electron transfer in radical proteins. We show that the mechanism can be switched between CEP and ETPT by tuning the reaction pH and the electrochemical potential of the Ru-III/II oxidant. With a low driving force for the overall reaction the "energy conservative" CEP mechanism may dominate, in spite of the higher reorganisation energy as compared to ETPT.
引用
收藏
页码:4851 / 4858
页数:8
相关论文
共 36 条
[1]  
Aylward G. H., 1994, SI Chemical Data, V3rd
[2]   WATER OXIDATION IN PHOTOSYSTEM .2. FROM RADICAL CHEMISTRY TO MULTIELECTRON CHEMISTRY [J].
BABCOCK, GT ;
BARRY, BA ;
DEBUS, RJ ;
HOGANSON, CW ;
ATAMIAN, M ;
MCINTOSH, L ;
SITHOLE, I ;
YOCUM, CF .
BIOCHEMISTRY, 1989, 28 (25) :9557-9565
[3]   ADDITIVITY RULES FOR ESTIMATION OF THERMOCHEMICAL PROPERTIES [J].
BENSON, SW ;
CRUICKSHANK, FR ;
GOLDEN, DM ;
HAUGEN, GR ;
ONEAL, HE ;
RODGERS, AS ;
SHAW, R ;
WALSH, R .
CHEMICAL REVIEWS, 1969, 69 (03) :279-+
[4]   Coupled electron-proton transfer in interactions of triplet C60 with hydrogen-bonded phenols:: Effects of solvation, deuteration, and redox potentials [J].
Biczók, L ;
Gupta, N ;
Linschitz, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (51) :12601-12609
[5]   The role of hydrogen bonds for the multiphasic P680+• reduction by Yz in photosystem II with intact oxygen evolution capacity.: Analysis of kinetic H/D isotope exchange effects [J].
Christen, G ;
Renger, G .
BIOCHEMISTRY, 1999, 38 (07) :2068-2077
[6]   Proton-coupled electron transfer [J].
Cukier, RI ;
Nocera, DG .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 :337-369
[7]  
DESILVESTRO J, 1985, CHIMIA, V39, P102
[8]  
Diner B.A., 1996, OXYGENIC PHOTOSYNTHE, P213
[9]   Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation [J].
Diner, BA .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1503 (1-2) :147-163
[10]   DETERMINATION OF ACIDITY CONSTANTS OF SOME PHENOL RADICAL CATIONS BY MEANS OF ELECTRON-SPIN RESONANCE [J].
DIXON, WT ;
MURPHY, D .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1976, 72 :1221-1230