On the Dobrakov submeasure on fuzzy sets

被引:13
作者
Riecan, B [1 ]
机构
[1] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
关键词
fuzzy sets; submeasures; Darboux property; nonatomicity;
D O I
10.1016/j.fss.2004.07.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The well-known fact that any nonatomic measure has the Darboux property has been generalized in many directions. Particularly by Dobrakov (Dissertationes Math. 112 (1974) 1) and recently by Klimkin and Svistula (Mat. Sb. 192 (2001) 41). In this paper the fuzzy sets are taken instead of sets as elements of domain of considered mappings. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:635 / 641
页数:7
相关论文
共 20 条
  • [1] Butnariu D., 2002, handbook of measure theory, P947
  • [2] Butnariu D., 1993, Triangular Norm-Based Measures and Games with Fuzzy Coalitions
  • [3] CERNEK P, 1982, ACTA MATH U COMENIAN, V40, P301
  • [4] CERNEK P, 1994, ZB RAD PRIROD MAT FA, V24, P73
  • [5] Dinculeanu N., 1966, Vector Measures
  • [6] Dobrakov I., 1980, Math Slovaca, V30, P65
  • [7] Dobrakov I., 1974, DISS MATH, V112
  • [8] THE RANGE OF A VECTOR MEASURE
    HALMOS, PR
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (04) : 416 - 421
  • [9] Jureckova M., 2004, Mathematica Slovaca, V54, P161
  • [10] Klement E. P., 2000, Triangular Norms