Connections between connexins, calcium, and cataracts in the lens

被引:101
作者
Gao, JY
Sun, XR
Martinez-Wittinghan, FJ
Gong, XH
White, TW
Mathias, RT
机构
[1] SUNY Stony Brook, Hlth Sci Ctr, Dept Physiol & Biophys, Stony Brook, NY 11794 USA
[2] Univ Calif Berkeley, Sch Optometry, Berkeley, CA 94720 USA
关键词
connexin knockout; connexin knockin; intracellular calcium; gap junctions; coupling conductance;
D O I
10.1085/jgp.200409121
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
There is a good deal of evidence that the lens generates an internal micro circulatory system, which brings metabolites, like glucose, and antioxidants, like ascorbate, into the lens along the extracellular spaces between cells. Calcium also ought to be carried into the lens by this system. If so, the only path for Ca2+ to get Out of the lens is to move down its electrochemical gradient into fiber cells, and then move by electrodiffusion from cell to Cell through gap junctions to surface cells, where Ca-ATPase activity and Na/Ca exchange can transport it back into the aqueous Or Vitreous humors. The purpose of the present study was to test this calcium circulation hypothesis by studying calcium homeostasis in connexin (Cx46) knockout and (Cx46 for Cx50) knockin mouse lenses, which have different degrees of gap junction coupling. To measure intracellular calcium, FURA2 was injected into fiber cells, and the gradient in calcium concentration from center to Surface was mapped in each type of lens. In wild-type lenses the coupling conductance of the mature fibers was similar to0.5 S/cm(2) of cell to cell contact, and the best fit to the calcium concentration data varied from 700 nM in the center to 300 nM at the surface. In the knockin lenses, the coupling conductance was similar to1.0 S/cm(2) and calcium varied from similar to500 nM at the center to 300 nM at the surface. Thus, when the coupling conductance doubled, the concentration gradient halved, as predicted by the model. In knockout lenses, the coupling conductance was zero, hence the efflux path was knocked out and calcium accumulated to similar to2 muM in central fibers. Knockout lenses also had a dense central cataract that extended from the center to about half the radius. Others have previously shown that this cataract involves activation of a calcium-dependent protease, Lp82. We can now expand on this finding to provide a hypothesis on each step that leads to cataract formation: knockout of Cx46 causes loss of coupling of mature fiber cells; the efflux path for calcium is therefore blocked; calcium accumulates in the central cells; at concentrations above similar to1 muM (from the center to about half way out of a 3-wk-old lens) Lp82 is activated; Lp82 cleaves cytoplasmic proteins (crystallins) in central cells; and the cleaved proteins aggregate and scatter light.
引用
收藏
页码:289 / 300
页数:12
相关论文
共 29 条
[1]   Gap junctional coupling in lenses from α8 connexin knockout mice [J].
Baldo, GJ ;
Gong, XH ;
Martinez-Wittinghan, FJ ;
Kumar, NM ;
Gilula, NB ;
Mathias, RG .
JOURNAL OF GENERAL PHYSIOLOGY, 2001, 118 (05) :447-456
[2]   Defining a link between gap junction communication, proteolysis, and cataract formation [J].
Baruch, A ;
Greenbaum, D ;
Levy, ET ;
Nielsen, PA ;
Gilula, NB ;
Kumar, NM ;
Bogyo, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :28999-29006
[3]   Lens organelle degradation [J].
Bassnett, S .
EXPERIMENTAL EYE RESEARCH, 2002, 74 (01) :1-6
[4]   Cl secretagogues reduce basolateral K permeability in the rabbit corneal epithelium [J].
Candia, OA ;
Zamudio, AC .
JOURNAL OF MEMBRANE BIOLOGY, 2002, 190 (03) :197-205
[5]  
Donaldson P, 2001, NEWS PHYSIOL SCI, V16, P118
[6]   DISTRIBUTION OF NON-DIFFUSIBLE CALCIUM AND SODIUM IN NORMAL AND CATARACTOUS HUMAN LENSES [J].
DUNCAN, G ;
VANHEYNINGEN, R .
EXPERIMENTAL EYE RESEARCH, 1977, 25 (02) :183-193
[7]   Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium [J].
Gao, J ;
Sun, X ;
Yatsula, V ;
Wymore, RS ;
Mathias, RT .
JOURNAL OF MEMBRANE BIOLOGY, 2000, 178 (02) :89-101
[8]   Genetic background influences cataractogenesis, but not lens growth deficiency, in Cx50-knockout mice [J].
Gerido, DA ;
Sellitto, C ;
Li, LP ;
White, TW .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (06) :2669-2674
[9]   Disruption of alpha(3) connexin gene leads to proteolysis and cataractogenesis in mice [J].
Gong, XH ;
Li, E ;
Klier, G ;
Huang, QL ;
Wu, Y ;
Lei, H ;
Kumar, NM ;
Horwitz, J ;
Gilula, NB .
CELL, 1997, 91 (06) :833-843
[10]   Gap junctional coupling in lenses lacking α3 connexin [J].
Gong, XH ;
Baldo, GJ ;
Kumar, NM ;
Gilula, NB ;
Mathias, RT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15303-15308