Nucleofection of muscle-derived stem cells and myoblasts with φC31 integrase:: Stable expression of a full-length-dystrophin fusion gene by human myoblasts

被引:69
作者
Quenneville, SP
Chapdelaine, P
Rousseau, J
Beaulieu, J
Caron, NJ
Skuk, D
Mills, P
Olivares, EC
Calos, MP
Tremblay, JP
机构
[1] CHU Laval, Ctr Rech, Unite Rech Genet Humaine, CHUQ,Fac Med, Quebec City, PQ G1V 4G2, Canada
[2] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
关键词
nucleofection; attB sequence; phi C311 integrase; stem cells; eGFP-full-length dystrophin; ex vivo gene therapy; Duchenne muscular dystrophy (DMD); transplantation of nucleofected myogenic cells;
D O I
10.1016/j.ymthe.2004.05.034
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Ex vivo gene therapy offers a potential treatment for Duchenne muscular dystrophy by transfection of the dystrophin gene into the patient's own myogenic precursor cells, followed by transplantation. We used nucleofection to introduce DNA plasmids coding for enhanced green fluorescent protein (eGFP) or eGFP-dystrophin fusion protein and the phage phiC31 integrase into myogenic cells and to integrate these genes into a limited number of sites in the genome. Using a plasmid expressing eGFP, we transfected 50% of a mouse muscle-derived stem cell line and 60% of normal human myoblasts. Co-nucleofection of a plasmid expressing the phiC31 integrase and an eGFP expression plasmid containing an attB sequence produced 15 times more frequent stable expression, because of site-specific integration of the transgene. Co-nucleofection of the phiC31 integrase plasmid and a large plasmid containing the attB sequence and the gene for an eGFP-full-length dystrophin fusion protein produced fluorescent human myoblasts that were able to form more intensely fluorescent myotubes after 1 month of culture. A nonviral approach combining nucleofection and the phiC31 integrase may eventually permit safe autotransplantation of genetically modified cells to patients.
引用
收藏
页码:679 / 687
页数:9
相关论文
共 36 条
[1]  
Akkaraju GR, 1999, J GENE MED, V1, P280, DOI 10.1002/(SICI)1521-2254(199907/08)1:4<280::AID-JGM45>3.0.CO
[2]  
2-L
[3]  
ALBERT N, 1992, TRANSPLANT P, V24, P2784
[4]  
Bujold M, 2002, CELL TRANSPLANT, V11, P759
[5]   Transfection of large plasmids in primary human myoblasts [J].
Campeau, P ;
Chapdelaine, P ;
Seigneurin-Venin, S ;
Massie, B ;
Tremblay, JP .
GENE THERAPY, 2001, 8 (18) :1387-1394
[6]   Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential [J].
Cao, BH ;
Zheng, B ;
Jankowski, RJ ;
Kimura, S ;
Ikezawa, M ;
Deasy, B ;
Cummins, J ;
Epperly, M ;
Qu-Petersen, Z ;
Huard, J .
NATURE CELL BIOLOGY, 2003, 5 (07) :640-646
[7]   Functional EGFP-dystrophin fusion proteins for gene therapy vector development [J].
Chapdelaine, P ;
Moisset, PA ;
Campeau, P ;
Asselin, I ;
Vilquin, JT ;
Tremblay, JP .
PROTEIN ENGINEERING, 2000, 13 (09) :611-615
[8]  
CHAPDELAINE P, 1993, BIOTECHNIQUES, V14, P163
[9]   Improvement of mouse β-thalassemia upon erythropoietin delivery by encapsulated myoblasts [J].
Dalle, B ;
Payen, E ;
Regulier, E ;
Deglon, N ;
Rouyer-Fessard, P ;
Beuzard, Y ;
Aebischer, P .
GENE THERAPY, 1999, 6 (02) :157-161
[10]   Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin [J].
DelloRusso, C ;
Scott, JM ;
Hartigan-O'Connor, D ;
Salvatori, G ;
Barjot, C ;
Robinson, AS ;
Crawford, RW ;
Brooks, SV ;
Chamberlain, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12979-12984