Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin

被引:104
作者
Yap, KL
Yuan, T
Mal, TK
Vogel, HJ
Ikura, M
机构
[1] Univ Toronto, Div Mol & Struct Biol, Ontario Canc Inst, Toronto, ON M5G 2M9, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada
[3] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
基金
加拿大健康研究院;
关键词
calmodulin; glutamate decarboxylase; Petunia; dimer; NMR;
D O I
10.1016/S0022-2836(03)00271-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activation of glutamate decarboxylase (GAD) by calcium-bound calmodulin (CaM) is required for normal plant growth through regulation of gamma-aminobutyrate and glutamate metabolism. The interaction of CaM with the C-terminal domain of GAD is believed to induce dimerization of the enzyme, an event implicated for Ca2+-dependent enzyme activation. Here, we present the solution structure of CaM in complex with a dimer of peptides derived from the C-terminus of Petunia hybrida GAD. The 23 kDa ternary complex is pseudo-symmetrical with each domain of CaM bound to one of the two antiparallel GAD peptides, which form an X-shape with an interhelical angle of 60degrees. To accommodate the dimeric helical GAD target, the two domains of CaM adopt an orientation markedly different from that seen in other CaM-target complexes. Although the dimeric GAD domain is much larger than previously studied CaM-binding peptides, the two CaM domains appear closer together and make a number of interdomain contacts not observed in earlier complexes. The present structure of a single CaM molecule interacting with two target peptides provides new evidence for the conformational flexibility of CaM as well as a structural basis for the ability of CaM to activate two enzyme molecules simultaneously. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 63 条
[1]   Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus [J].
Akama, K ;
Akihiro, T ;
Kitagawa, M ;
Takaiwa, F .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2001, 1522 (03) :143-150
[2]   MOLECULAR AND BIOCHEMICAL-ANALYSIS OF CALMODULIN INTERACTIONS WITH THE CALMODULIN-BINDING DOMAIN OF PLANT GLUTAMATE-DECARBOXYLASE [J].
ARAZI, T ;
BAUM, G ;
SNEDDEN, WA ;
SHELP, BJ ;
FROMM, H .
PLANT PHYSIOLOGY, 1995, 108 (02) :551-561
[3]   Structure of glutamate decarboxylase and related PLP-enzymes: Computer-graphical studies [J].
Areshev, AG ;
Mamaeva, OK ;
Andreeva, NS ;
Sukhareva, BS .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2000, 18 (01) :127-136
[4]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[5]  
BARTELS C, 1995, J BIOMOL NMR, V5, P1
[6]  
BAUM G, 1993, J BIOL CHEM, V268, P19610
[7]   Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants [J].
Baum, G ;
LevYadun, S ;
Fridmann, Y ;
Arazi, T ;
Katsnelson, H ;
Zik, M ;
Fromm, H .
EMBO JOURNAL, 1996, 15 (12) :2988-2996
[8]   H-1-H-1 CORRELATION VIA ISOTROPIC MIXING OF C-13 MAGNETIZATION, A NEW 3-DIMENSIONAL APPROACH FOR ASSIGNING H-1 AND C-13 SPECTRA OF C-13-ENRICHED PROTEINS [J].
BAX, A ;
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (02) :425-431
[9]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[10]   NUCLEOTIDE-SEQUENCE AND DEVELOPMENTAL EXPRESSION OF DUPLICATED GENES ENCODING PROTEIN DISULFIDE-ISOMERASE IN BARLEY (HORDEUM-VULGARE L) [J].
CHEN, FQ ;
HAYES, PM .
PLANT PHYSIOLOGY, 1994, 106 (04) :1705-1706