Nonequilibrium relaxation of fluctuations of physical quantities

被引:65
作者
Ito, N [1 ]
Hukushima, K
Ogawa, K
Ozeki, Y
机构
[1] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[3] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
关键词
nonequilibrium relaxation; dynamical behavior; phase transition; phase diagram; Ising model; fluctuation; Monte Carlo; computer simulation;
D O I
10.1143/JPSJ.69.1931
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonequilibrium relaxation (NER) process of fluctuations of physical quantities is studied simulationally. It is shown that the NER method, which is a convenient technique for studying the phase and transition, is useful not only for identifying the phase and locating the transition point, but also for estimating both static and dynamical exponents. As an example, the cubic-lattice ferromagnetic Ising model is analyzed. The transition inverse-temperature is estimated to be K-c = 0.2216595(15). The exponents of correlation length, magnetization, and specific heat are estimated to be nu = 0.635(5), beta = 0.325(5) and alpha = 0.14(2), respectively. The dynamical exponent z is estimated to be 2.055(10).
引用
收藏
页码:1931 / 1934
页数:4
相关论文
共 49 条
[1]   MONTE-CARLO RENORMALIZATION-GROUP STUDY OF THE 3-DIMENSIONAL ISING-MODEL [J].
BAILLIE, CF ;
GUPTA, R ;
HAWICK, KA ;
PAWLEY, GS .
PHYSICAL REVIEW B, 1992, 45 (18) :10438-10453
[2]   MONTE-CARLO RENORMALIZATION OF THE 3-DIMENSIONAL ISING-MODEL [J].
BLOTE, HWJ ;
COMPAGNER, A ;
CROOCKEWIT, JH ;
FONK, YTJC ;
HERINGA, JR ;
HOOGLAND, A ;
SMIT, TS ;
VANWILLIGEN, AL .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1989, 161 (01) :1-22
[3]   ISING UNIVERSALITY IN 3 DIMENSIONS - A MONTE-CARLO STUDY [J].
BLOTE, HWJ ;
LUIJTEN, E ;
HERINGA, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6289-6313
[4]  
CAMPOSTRINI M, CONDMAT9905078
[5]   CRITICAL-BEHAVIOR OF THE 3-DIMENSIONAL ISING-MODEL - A HIGH-RESOLUTION MONTE-CARLO STUDY [J].
FERRENBERG, AM ;
LANDAU, DP .
PHYSICAL REVIEW B, 1991, 44 (10) :5081-5091
[6]   DAMAGE SPREADING AND CRITICAL EXPONENTS FOR MODEL-A ISING DYNAMICS [J].
GROPENGIESSER, U .
PHYSICA A, 1995, 215 (03) :308-310
[7]  
GUIDA R, CONDMAT9803240
[8]   Nonequilibrium relaxation method and its applications [J].
Ito, N ;
Ozeki, Y .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (08) :1495-1502
[9]  
Ito N., 1990, Proceedings of Supercomputing '90 (Cat. No.90CH2916-5), P753, DOI 10.1109/SUPERC.1990.130097
[10]  
ITO N, 1988, SUPERCOMPUTER, V5, P31