A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

被引:111
作者
Roden, JA [1 ]
Belt, B [1 ]
Ross, JB [1 ]
Tachibana, T [1 ]
Vargas, J [1 ]
Mudgett, MB [1 ]
机构
[1] Stanford Univ, Dept Sci Biol, Stanford, CA 94305 USA
关键词
bacterial plant pathogenesis; virulence proteins;
D O I
10.1073/pnas.0407383101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resulted in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cyclase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.
引用
收藏
页码:16624 / 16629
页数:6
相关论文
共 43 条
[1]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Comparison of ARM and HEAT protein repeats [J].
Andrade, MA ;
Petosa, C ;
O'Donoghue, SI ;
Müller, CW ;
Bork, P .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 309 (01) :1-18
[4]   From flagellum assembly to virulence: the extended family of type III export chaperones [J].
Bennett, JCQ ;
Hughes, C .
TRENDS IN MICROBIOLOGY, 2000, 8 (05) :202-204
[5]   PHYSIOLOGICAL, CHEMICAL, SEROLOGICAL, AND PATHOGENIC ANALYSES OF A WORLDWIDE COLLECTION OF XANTHOMONAS-CAMPESTRIS PV VESICATORIA STRAINS [J].
BOUZAR, H ;
JONES, JB ;
STALL, RE ;
HODGE, NC ;
MINSAVAGE, GV ;
BENEDICT, AA ;
ALVAREZ, AM .
PHYTOPATHOLOGY, 1994, 84 (07) :663-671
[6]   Common infection strategies of plant and animal pathogenic bacteria [J].
Büttner, D ;
Bonas, U .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (04) :312-319
[7]   Getting across -: bacterial type III effector proteins on their way to the plant cell [J].
Büttner, D ;
Bonas, U .
EMBO JOURNAL, 2002, 21 (20) :5313-5322
[8]   Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria [J].
Büttner, D ;
Nennstiel, D ;
Klüsener, B ;
Bonas, U .
JOURNAL OF BACTERIOLOGY, 2002, 184 (09) :2389-+
[9]   Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells [J].
Casper-Lindley, C ;
Dahlbeck, D ;
Clark, ET ;
Staskawicz, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :8336-8341
[10]   AtCAND1, a HEAT-repeat protein that participates in auxin signaling in arabidopsis [J].
Cheng, YF ;
Dai, XH ;
Zhao, Y .
PLANT PHYSIOLOGY, 2004, 135 (02) :1020-1026