Dynamic critical behavior of the XY model in small-world networks -: art. no. 036118

被引:51
作者
Medvedyeva, K [1 ]
Holme, P
Minnhagen, P
Kim, BJ
机构
[1] Umea Univ, Dept Phys, S-90187 Umea, Sweden
[2] NORDITA, DK-2100 Copenhagen, Denmark
[3] Ajou Univ, Dept Mol Sci & Technol, Suwon 442749, South Korea
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.036118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The critical behavior of the XY model on small-world network is investigated by means of dynamic Monte Carlo simulations. We use the short-time relaxation scheme, i.e., the critical behavior is studied from the nonequilibrium relaxation to equilibrium. Static and dynamic critical exponents are extracted through the use of the dynamic finite-size scaling analysis. It is concluded that the dynamic universality class at the transition is of the mean-field nature. We also confirm numerically that the value of dynamic critical exponent is independent of the rewiring probability P for Pgreater than or similar to0.03.
引用
收藏
页数:4
相关论文
共 34 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Ferromagnetic phase transition in Barabasi-Albert networks [J].
Aleksiejuk, A ;
Holyst, JA ;
Stauffer, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) :260-266
[3]  
ALEKSIEJUKFRONC.A, CONDMAT0206027
[4]   On the properties of small-world network models [J].
Barrat, A ;
Weigt, M .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (03) :547-560
[5]   Small-world networks:: Evidence for a crossover picture (vol. 82, Pg. 3180, 1999) [J].
Barthélémy, M ;
Amaral, LAN .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :5180-5180
[6]   Small-world networks:: Evidence for a crossover picture [J].
Barthélémy, M ;
Amaral, LAN .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3180-3183
[7]  
BIANCONI G, CONDMAT0204455
[8]  
BOYER D, CONDMAT0210352
[9]   Breakdown of scaling in the nonequilibrium critical dynamics of the two-dimensional XY model [J].
Bray, AJ ;
Briant, AJ ;
Jervis, DK .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1503-1506
[10]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187