Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy

被引:25
作者
Galkin, O
Buchter, S
Tabirian, A
Schulte, A
机构
[1] UNIV CENT FLORIDA, DEPT PHYS, ORLANDO, FL 32816 USA
[2] UNIV CENT FLORIDA, CTR RES & EDUC OPT & LASERS, ORLANDO, FL 32816 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0006-3495(97)78304-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The influence of high pressure on the heme protein conformation of myoglobin in different ligation states is studied using Raman spectroscopy over the temperature range from 30 to 295 K. Photostationary experiments monitoring the oxidation state marker bands demonstrate the change of rebinding rate with pressure. While frequency changes of vibrational modes associated with rigid bonds of the porphyrin ring are <1 cm(-1), we investigate a significant shift of the iron-histidine mode to higher frequency with increasing pressure (approximate to 3 cm(-1) for Delta P = 190 MPa in Mb). The observed frequency shift is interpreted structurally as a conformational change affecting the tilt angle between the heme plane and the proximal histidine and the out-of-plane iron position. Independent evidence for iron motion comes from measurements of the redshift of band III in the near-infrared with pressure. This suggests that at high pressure the proximal heme pocket and the protein are altered toward the bound state conformation, which contributes to the rate increase for CO binding. Raman spectra of Mb and photodissociated MbCO measured at low temperature and variable pressure further support changes in protein conformation and are consistent with grasslike properties of myoglobin below 160 K.
引用
收藏
页码:2752 / 2763
页数:12
相关论文
共 81 条
[1]  
ADACHI S, 1989, J BIOL CHEM, V264, P18896
[2]   CO BINDING TO HEME-PROTEINS - A MODEL FOR BARRIER HEIGHT DISTRIBUTIONS AND SLOW CONFORMATIONAL-CHANGES [J].
AGMON, N ;
HOPFIELD, JJ .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (04) :2042-2053
[3]   EVIDENCE FOR PROXIMAL CONTROL OF LIGAND SPECIFICITY IN HEMEPROTEINS - ABSORPTION AND RAMAN STUDIES OF CRYOGENICALLY TRAPPED PHOTOPRODUCTS OF LIGAND BOUND MYOGLOBINS [J].
AHMED, AM ;
CAMPBELL, BF ;
CARUSO, D ;
CHANCE, MR ;
CHAVEZ, MD ;
COURTNEY, SH ;
FRIEDMAN, JM ;
IBEN, IET ;
ONDRIAS, MR ;
YANG, M .
CHEMICAL PHYSICS, 1991, 158 (2-3) :329-351
[4]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[5]   REBINDING AND RELAXATION IN THE MYOGLOBIN POCKET [J].
ANSARI, A ;
BERENDZEN, J ;
BRAUNSTEIN, D ;
COWEN, BR ;
FRAUENFELDER, H ;
HONG, MK ;
IBEN, IET ;
JOHNSON, JB ;
ORMOS, P ;
SAUKE, TB ;
SCHOLL, R ;
SCHULTE, A ;
STEINBACH, PJ ;
VITTITOW, J ;
YOUNG, RD .
BIOPHYSICAL CHEMISTRY, 1987, 26 (2-3) :337-355
[6]   PROTEIN STATES AND PROTEIN QUAKES [J].
ANSARI, A ;
BERENDZEN, J ;
BOWNE, SF ;
FRAUENFELDER, H ;
IBEN, IET ;
SAUKE, TB ;
SHYAMSUNDER, E ;
YOUNG, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (15) :5000-5004
[7]  
ANSARI A, 1988, THESIS U ILLINOIS UR
[8]   DYNAMICS OF LIGAND-BINDING TO MYOGLOBIN [J].
AUSTIN, RH ;
BEESON, KW ;
EISENSTEIN, L ;
FRAUENFELDER, H ;
GUNSALUS, IC .
BIOCHEMISTRY, 1975, 14 (24) :5355-5373
[9]   CO RECOMBINATION TO HUMAN MYOGLOBIN MUTANTS IN GLYCEROL WATER SOLUTIONS [J].
BALASUBRAMANIAN, S ;
LAMBRIGHT, DG ;
MARDEN, MC ;
BOXER, SG .
BIOCHEMISTRY, 1993, 32 (09) :2202-2212
[10]  
BANGCHAROENPAUR.O, 1984, J AM CHEM SOC, V108, P1163