Marginal estimation of aberrations and image restoration by use of phase diversity

被引:68
作者
Blanc, A
Mugnier, LM
Idier, J
机构
[1] Off Natl Etud & Rech Aerosp, Dept Opt, F-92322 Chatillon, France
[2] Ecole Super Elect, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 2003年 / 20卷 / 06期
关键词
D O I
10.1364/JOSAA.20.001035
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a novel method called marginal estimator for estimating the aberrations and the object from phase-diversity data. The conventional estimator found in the literature concerning the technique first proposed by Gonsalves has its basis in a joint estimation of the aberrated phase and the observed object. By means of simulations, we study the behavior of the conventional estimator, which is interpretable as a joint maximum a posteriori approach, and we show in particular that it has undesirable asymptotic properties and does not permit an optimal joint estimation of the object and the aberrated phase. We propose a novel marginal estimator of the sole phase by maximum a posteriori. It is obtained by integrating the observed object out of the problem. This reduces drastically the number of unknowns, allows the unsupervised estimation of the regularization parameters, and provides better asymptotic properties. We show that the marginal method is also appropriate for the restoration of the object. This estimator is implemented and its properties are validated by simulations. The performance of the joint method and the marginal one is compared on both simulated and experimental data in the case of Earth observation. For the studied object, the comparison of the quality of the phase restoration shows that the performance of the marginal approach is better under high-noise-level conditions. (C) 2003 Optical Society of America.
引用
收藏
页码:1035 / 1045
页数:11
相关论文
共 22 条
[1]  
[Anonymous], THEORIE MATRICES
[2]  
BORN M, 1983, PRINCIPLES OPTICS
[3]   Regularizing strategy for image restoration and wave-front sensing by phase diversity [J].
Bucci, OM ;
Capozzoli, A ;
D'Elia, G .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (07) :1759-1768
[4]   Aberration correction of segmented-aperture telescopes by using phase diversity [J].
Carrara, DA ;
Thelen, BJ ;
Paxman, RG .
IMAGE RECONSTRUCTION FROM INCOMPLETE DATA, 2000, 4123 :56-63
[5]  
CARVALHO ED, 1997, P ICASSP MUN APR, P3593
[6]  
CHAMPAGNAT F, 1995, P IEEE INT C AC SPEE, P2020
[7]   PHASE RETRIEVAL AND DIVERSITY IN ADAPTIVE OPTICS [J].
GONSALVES, RA .
OPTICAL ENGINEERING, 1982, 21 (05) :829-832
[8]  
GOUSSARD Y, 1990, P IEEE INT C AC SPEE, P1547
[9]   Model of the second-order statistic of the radiance field of natural scenes, adapted to system conceiving. [J].
Kattnig, AP ;
Primot, J .
VISUAL INFORMATION PROCESSING VI, 1997, 3074 :132-141
[10]   PHASE-DIVERSITY WAVE-FRONT SENSOR FOR IMAGING-SYSTEMS [J].
KENDRICK, RL ;
ACTON, DS ;
DUNCAN, AL .
APPLIED OPTICS, 1994, 33 (27) :6533-6546