Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: The ferritin story

被引:41
作者
Theil, Elizabeth C.
机构
[1] Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA
[2] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94702 USA
关键词
oxygen; ferritin; Dps protein; antioxidant response (ARE) genes; mRNA (IRE) regulation;
D O I
10.1007/s10534-006-9063-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Combinations of DNA antioxidant response element and mRNA iron responsive element regulate ferritin expression in animals in response to oxidant and iron stress, or normal developmental signals. Ferritins are protein nanocages, found in animals, plants, bacteria, and archaea, that convert iron and oxygen to ferric oxy biominerals in the protein central cavity; the mineral traps potentially toxic reactants and concentrates iron for the future synthesis of other iron/heme proteins. Regulatory signals and the nanocage gene products are the same throughout biology, but the genetic mechanisms, DNA versus DNA + mRNA, vary. The number of genes, temporal regulation, tissue distribution in multi-cellular organisms, and gene product size (maxi-ferritins have 24 subunits and mini-ferritins, or Dps proteins, have 12 subunits and are restricted to bacteria and archaea) suggest an overwhelming diversity and variability. However, common themes of regulation and function are described which indicate not only that the three-dimensional protein structure and the functions of the ferritins are conserved, but also that broad features of genetic regulation are conserved relative to organismal and/or community needs. The analysis illustrates the centrality of the ferritins to life with iron and oxygen and models how Nature harnesses potentially dangerous chemistry for biology.
引用
收藏
页码:513 / 521
页数:9
相关论文
共 67 条
[1]   Structure and dynamics of the iron responsive element RNA: Implications for binding of the RNA by iron regulatory binding proteins [J].
Addess, KJ ;
Basilion, JP ;
Klausner, RD ;
Rouault, TA ;
Pardi, A .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 274 (01) :72-83
[2]   A NOVEL DNA-BINDING PROTEIN WITH REGULATORY AND PROTECTIVE ROLES IN STARVED ESCHERICHIA-COLI [J].
ALMIRON, M ;
LINK, AJ ;
FURLONG, D ;
KOLTER, R .
GENES & DEVELOPMENT, 1992, 6 (12B) :2646-2654
[3]   THE DPS PROMOTER IS ACTIVATED BY OXYR DURING GROWTH AND BY IHF AND A SIGMA(S) IN STATIONARY-PHASE [J].
ALTUVIA, S ;
ALMIRON, M ;
HUISMAN, G ;
KOLTER, R ;
STORZ, G .
MOLECULAR MICROBIOLOGY, 1994, 13 (02) :265-272
[4]   Iron storage in bacteria [J].
Andrews, SC .
ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 40, 1998, 40 :281-351
[5]   Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigma(B) in Bacillus subtilis [J].
Antelmann, H ;
Engelmann, S ;
Schmid, R ;
Sorokin, A ;
Lapidus, A ;
Hecker, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (23) :7251-7256
[6]   An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression [J].
Arnaud, Nicolas ;
Murgia, Irene ;
Boucherez, Jossia ;
Briat, Jean-Francois ;
Cellier, Francoise ;
Gaymard, Frederic .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (33) :23579-23588
[7]  
BALLA G, 1992, J BIOL CHEM, V267, P18148
[8]  
BROWN JE, 1978, J BIOL CHEM, V253, P2673
[9]   Evidence for reutilization of nodule iron in soybean seed development [J].
Burton, JW ;
Harlow, C ;
Theil, EC .
JOURNAL OF PLANT NUTRITION, 1998, 21 (05) :913-927
[10]   Differences in the RNA binding sites of iron regulatory proteins and potential target diversity [J].
Butt, J ;
Kim, HY ;
Basilion, JP ;
Cohen, S ;
Iwai, K ;
Philpott, CC ;
Altschul, S ;
Klausner, RD ;
Rouault, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :4345-4349