On spectral density of Neumann matrices

被引:16
作者
Belov, D
Konechny, A
机构
[1] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0370-2693(03)00242-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In [L. Rastelli, et al., hep-th/0111281] the complete set of eigenvectors and eigenvalues of Neumann matrices was found. It was shown also that the spectral density contains a divergent constant piece that being regulated by truncation at level L equals log L/2pi. In this Letter we find an exact analytic expression for the finite part of the spectral density. This function allows one to calculate finite parts of various determinants arising in string field theory computations. We put our result to some consistency checks. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 8 条
[1]  
BELOV DM, HEPTH0207174
[2]  
BELOV DM, HEPTH0204164
[3]  
FENG B, HEPTH0202176
[4]  
FUCHS E, HEPTH0210155
[5]   STRING FIELD-THEORY ON THE CONFORMAL PLANE .2. GENERALIZED GLUING [J].
LECLAIR, A ;
PESKIN, ME ;
PREITSCHOPF, CR .
NUCLEAR PHYSICS B, 1989, 317 (02) :464-508
[6]  
OKUYAMA K, HEPTH0201015
[7]  
RASTELLI L, HEPTH0111281
[8]   NONCOMMUTATIVE GEOMETRY AND STRING FIELD-THEORY [J].
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 268 (02) :253-294