Insertions into the β3-β4 hairpin loop of HIV-1 reverse transcriptase reveal a role for fingers subdomain in processive polymerization

被引:37
作者
Kew, Y
Olsen, LR
Japour, AJ
Prasad, VR
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10461 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
[3] Beth Israel Hosp, Boston, MA 02215 USA
关键词
D O I
10.1074/jbc.273.13.7529
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) displays a characteristic poor processivity during DNA polymerization. Structural elements of RT that determine processivity are poorly understood. The three-dimensional structure of HTV-1 RT, which assumes a hand-like structure, shows that the fingers, palm, and thumb subdomains form the template-binding cleft and may be involved in determining the degree of processivity. To assess the influence of fingers subdomain of HIV-1 RT in polymerase processivity, two insertions were engineered in the beta 3-beta 4 hairpin of HIV-1(NL4-3) RT. The recombinant mutant RTs, named FE20 and FE103, displayed wild type or near wild type levels of RNA-dependent DNA polymerase activity on all templates tested and wild type or near wild type-like sensitivities to dideoxy-NTPs. When polymerase activities were measured under conditions that allow a single cycle of DNA polymerization, both of the mutants displayed 25-30% greater processivity than wild type enzyme. Homology modeling the three-dimensional structures of wild type HIV-1(NL4-3), RT and its finger insertion mutants revealed that the extended loop between the beta 3 and beta 4 strands protrudes into the cleft, reducing the distance between the fingers and thumb subdomains to similar to 12 Angstrom. Analysis of the models for the mutants suggests an extensive interaction between the protein and template-primer, which may reduce the degree of superstructure in the template-primer, Our data suggest that the beta 3-beta 4 hairpin of fingers subdomain is an important determinant of processive polymerization by HIV-1 RT.
引用
收藏
页码:7529 / 7537
页数:9
相关论文
共 41 条
[1]   PRODUCTION OF ACQUIRED IMMUNODEFICIENCY SYNDROME-ASSOCIATED RETROVIRUS IN HUMAN AND NONHUMAN CELLS TRANSFECTED WITH AN INFECTIOUS MOLECULAR CLONE [J].
ADACHI, A ;
GENDELMAN, HE ;
KOENIG, S ;
FOLKS, T ;
WILLEY, R ;
RABSON, A ;
MARTIN, MA .
JOURNAL OF VIROLOGY, 1986, 59 (02) :284-291
[2]   The K65R mutation confers increased DNA polymerase processivity to HIV-1 reverse transcriptase [J].
Arion, D ;
Borkow, G ;
Gu, ZG ;
Wainberg, MA ;
Parniak, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (33) :19860-19864
[3]   STRUCTURES OF DNA AND RNA-POLYMERASES AND THEIR INTERACTIONS WITH NUCLEIC-ACID SUBSTRATES [J].
ARNOLD, E ;
DING, JP ;
HUGHES, SH ;
HOSTOMSKY, Z .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1995, 5 (01) :27-38
[4]   REDUCED FRAMESHIFT FIDELITY AND PROCESSIVITY OF HIV-1 REVERSE-TRANSCRIPTASE MUTANTS CONTAINING ALANINE SUBSTITUTIONS IN HELIX-H OF THE THUMB SUBDOMAIN [J].
BEBENEK, K ;
BEARD, WA ;
CASASFINET, JR ;
KIM, HR ;
DARDEN, TA ;
WILSON, SH ;
KUNKEL, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (33) :19516-19523
[5]  
BEBENEK K, 1989, J BIOL CHEM, V264, P16948
[6]   CASSETTE MUTAGENESIS OF THE REVERSE-TRANSCRIPTASE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 [J].
BOYER, PL ;
FERRIS, AL ;
HUGHES, SH .
JOURNAL OF VIROLOGY, 1992, 66 (02) :1031-1039
[7]   SENSITIVITY OF WILD-TYPE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 REVERSE-TRANSCRIPTASE TO DIDEOXYNUCLEOTIDES DEPENDS ON TEMPLATE LENGTH - THE SENSITIVITY OF DRUG-RESISTANT MUTANTS DOES NOT [J].
BOYER, PL ;
TANTILLO, C ;
JACOBOMOLINA, A ;
NANNI, RG ;
DING, JP ;
ARNOLD, E ;
HUGHES, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (11) :4882-4886
[8]   ANALYSIS OF MUTATIONS AT POSITION-184 IN REVERSE-TRANSCRIPTASE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 [J].
BOYER, PL ;
HUGHES, SH .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (07) :1624-1628
[9]   Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins [J].
Bui, M ;
Whittaker, G ;
Helenius, A .
JOURNAL OF VIROLOGY, 1996, 70 (12) :8391-8401
[10]   Effects of zidovudine-selected human immunodeficiency virus type 1 reverse transcriptase amino acid substitutions on processive DNA synthesis and viral replication [J].
Caliendo, AM ;
Savara, A ;
An, D ;
DeVore, K ;
Kaplan, JC ;
DAquila, RT .
JOURNAL OF VIROLOGY, 1996, 70 (04) :2146-2153