Sample size for detecting differentially expressed genes in microarray experiments

被引:102
作者
Wei, CM
Li, JN
Bumgarner, RE [1 ]
机构
[1] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
[2] Univ Washington, Dept Pathol, Seattle, WA 98195 USA
关键词
D O I
10.1186/1471-2164-5-87
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human). Results: We hypothesize that if all other factors ( assay protocol, microarray platform, data preprocessing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets ( humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile. Conclusions: Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2- fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects.
引用
收藏
页数:10
相关论文
共 18 条
[1]  
[Anonymous], GENOME BIOL
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Microarray expression profiling identifies genes with altered expression in HDL-deficient mice [J].
Callow, MJ ;
Dudoit, S ;
Gong, EL ;
Speed, TP ;
Rubin, EM .
GENOME RESEARCH, 2000, 10 (12) :2022-2029
[4]   Gene expression patterns in human liver cancers [J].
Chen, X ;
Cheung, ST ;
So, S ;
Fan, ST ;
Barry, C ;
Higgins, J ;
Lai, KM ;
Ji, JF ;
Dudoit, S ;
Ng, IOL ;
van de Rijn, M ;
Botstein, D ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (06) :1929-1939
[5]  
CUI X, 2003, STAT APPL GENET MOL, V2
[6]  
Dudoit S, 2002, STAT SINICA, V12, P111
[7]  
Kerr M Kathleen, 2003, Methods Mol Biol, V224, P137
[8]  
Kerr MK, 2001, GENET RES, V77, P123
[9]   Gene expression profiling identifies clinically relevant subtypes of prostate cancer [J].
Lapointe, J ;
Li, C ;
Higgins, JP ;
van de Rijn, M ;
Bair, E ;
Montgomery, K ;
Ferrari, M ;
Egevad, L ;
Rayford, W ;
Bergerheim, U ;
Ekman, P ;
DeMarzo, AM ;
Tibshirani, R ;
Botstein, D ;
Brown, PO ;
Brooks, JD ;
Pollack, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (03) :811-816
[10]   Power and sample size for DNA microarray studies [J].
Lee, MLT ;
Whitmore, GA .
STATISTICS IN MEDICINE, 2002, 21 (23) :3543-3570