Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening

被引:190
作者
Serra, V
von Zglinicki, T [1 ]
Lorenz, M
Saretzki, G
机构
[1] Univ Newcastle, Inst Ageing & Hlth, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England
[2] Charite Hosp, Inst Pathol, D-10098 Berlin, Germany
[3] Charite Hosp, Res Lab Cardiol, D-10098 Berlin, Germany
关键词
D O I
10.1074/jbc.M207939200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is good evidence that telomere shortening acts as a biological clock in human fibroblasts, limiting the number of population doublings a culture can achieve. Oxidative stress also limits the growth potential of human cells, and recent data show that the effect of mild oxidative stress is mediated by a stress-related increased rate of telomere shortening. Thus, fibroblast strains have donor-specific antioxidant defense, telomere shortening rate, and growth potential. We used low-density gene expression array analysis of fibroblast strains with different antioxidant potentials and telomere shortening rates to identify gene products responsible for these differences. Extracellular superoxide dismutase was identified as the strongest candidate, a correlation that was confirmed by Northern blotting. Over-expression of this gene in human fibroblasts with low antioxidant capacity increased total cellular superoxide dismutase activity, decreased the intracellular peroxide content, slowed the telomere shortening rate, and elongated the life span of these cells under normoxia and hyperoxia. These results identify extracellular superoxide dismutase as an important antioxidant gene product in human fibroblasts, confirm the causal role of oxidative stress for telomere shortening, and strongly suggest that the senescence-like arrest under mild oxidative stress is telomere-driven.
引用
收藏
页码:6824 / 6830
页数:7
相关论文
共 42 条
[1]   Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture [J].
Antunes, F ;
Cadenas, E ;
Brunk, UT .
BIOCHEMICAL JOURNAL, 2001, 356 :549-555
[2]   EFFECT OF OXYGEN AND VITAMIN-E ON LIFESPAN OF HUMAN DIPLOID CELLS INVITRO [J].
BALIN, AK ;
GOODMAN, DBP ;
RASMUSSEN, H ;
CRISTOFALO, VJ .
JOURNAL OF CELL BIOLOGY, 1977, 74 (01) :58-67
[3]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[4]   MICE LACKING EXTRACELLULAR-SUPEROXIDE DISMUTASE ARE MORE SENSITIVE TO HYPEROXIA [J].
CARLSSON, LM ;
JONSSON, J ;
EDLUND, T ;
MARKLUND, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6264-6268
[5]   OXIDATIVE DNA-DAMAGE AND SENESCENCE OF HUMAN-DIPLOID FIBROBLAST CELLS [J].
CHEN, Q ;
FISCHER, A ;
REAGAN, JD ;
YAN, LJ ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4337-4341
[6]   SENESCENCE-LIKE GROWTH ARREST INDUCED BY HYDROGEN-PEROXIDE IN HUMAN-DIPLOID FIBROBLAST F65 CELLS [J].
CHEN, Q ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (10) :4130-4134
[7]   The reductive hotspot hypothesis: An update [J].
de Grey, ADNJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 373 (01) :295-301
[8]  
Duguet M, 1997, J CELL SCI, V110, P1345
[9]   TELOMERES SHORTEN DURING AGING OF HUMAN FIBROBLASTS [J].
HARLEY, CB ;
FUTCHER, AB ;
GREIDER, CW .
NATURE, 1990, 345 (6274) :458-460
[10]   ISOLATION AND SEQUENCE OF COMPLEMENTARY-DNA ENCODING HUMAN EXTRACELLULAR SUPEROXIDE-DISMUTASE [J].
HJALMARSSON, K ;
MARKLUND, SL ;
ENGSTROM, A ;
EDLUND, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (18) :6340-6344