A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells

被引:88
作者
Zhu, Wei
Boachie-Adjei, Oheneba
Rawlins, Bernard A.
Frenkel, Baruch
Boskey, Adele L.
Ivashkiv, Lionel B.
Blobel, Carl P.
机构
[1] Hosp Special Surg, Arthrit & Tissue Degenerat Program, New York, NY 10021 USA
[2] Hosp Special Surg, Dept Orthopaed Surg, Spinal Deform Serv, New York, NY 10021 USA
[3] Univ So Calif, Keck Sch Med, Dept Biochem & Mol Biol, Los Angeles, CA 90033 USA
[4] Hosp Special Surg, Musculoskeletal Integrit Program, New York, NY 10021 USA
关键词
D O I
10.1074/jbc.M610232200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Stromal-derived factor 1 (SDF-1) is a chemokine with important functions in development and postnatal tissue homeostasis. SDF-1 signaling via the G-protein-coupled receptor CXCR4 regulates the recruitment of stem and precursor cells to support tissue-specific repair or regeneration. In this study we examined the contribution of SDF-1 signaling to osteogenic differentiation of mesenchymal C2C12 cells induced by bone morphogenic protein 2 (BMP2). Blocking SDF-1 signaling before BMP2 stimulation by treatment with siRNA, antibodies against SDF-1 or CXCR4, or the G-protein-coupled receptor inhibitor pertussis toxin strongly suppressed BMP2 induction of osteogenic differentiation in C2C12 cells, as evidenced by an early decrease in the expression of the myogenesis inhibitor Id1, the osteogenic master regulators Runx2 and Osx, the osteoblast-associated transcription factors JunB, Plzf, Msx2, and Dlx5, and later of the bone marker proteins osteocalcin and alkaline phosphatase. Similarly, blocking SDF-1/CXCR4 signaling strongly inhibited BMP2-induced osteogenic differentiation of ST2 bone marrow stromal cells. Moreover, we found that the interaction between SDF- 1 and BMP2 signaling was mediated via intracellular Smads and MAPK activation. Our data provide the first evidence for a co-requirement of the SDF-1/CXCR4 signaling axis in BMP2-induced osteogenic differentiation of C2C12 and ST2 cells and, thus, uncover a new potential target for modulation of osteogenesis.
引用
收藏
页码:18676 / 18685
页数:10
相关论文
共 68 条
[1]   Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells [J].
Ahn, SE ;
Kim, S ;
Park, KH ;
Moon, SH ;
Lee, HJ ;
Kim, GJ ;
Lee, YJ ;
Park, KH ;
Cha, KY ;
Chung, HM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 340 (02) :403-408
[2]  
Aiuti A, 1999, EUR J IMMUNOL, V29, P1823, DOI 10.1002/(SICI)1521-4141(199906)29:06<1823::AID-IMMU1823>3.0.CO
[3]  
2-B
[4]   Chemokines and leukocyte traffic [J].
Baggiolini, M .
NATURE, 1998, 392 (6676) :565-568
[5]   The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes [J].
Balabanian, K ;
Lagane, B ;
Infantino, S ;
Chow, KYC ;
Harriague, J ;
Moepps, B ;
Arenzana-Seisdedos, F ;
Thelen, M ;
Bachelerie, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (42) :35760-35766
[6]   The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry [J].
Bleul, CC ;
Farzan, M ;
Choe, H ;
Parolin, C ;
ClarkLewis, I ;
Sodroski, J ;
Springer, TA .
NATURE, 1996, 382 (6594) :829-833
[7]   CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment [J].
Burger, JA ;
Kipps, TJ .
BLOOD, 2006, 107 (05) :1761-1767
[8]   Lymphocyte homing and homeostasis [J].
Butcher, EC ;
Picker, LJ .
SCIENCE, 1996, 272 (5258) :60-66
[9]   Bone marrow stromal cells of young and adult rats respond similarly to platelet-released supernatant and bone morphogenetic protein-6 in vitro [J].
Cei, Silvia ;
Kandler, Barbara ;
Fuegl, Alexander ;
Gabriele, Mario ;
Hollinger, Jeffrey O. ;
Watzek, Georg ;
Grubert, Reinhard .
JOURNAL OF PERIODONTOLOGY, 2006, 77 (04) :699-706
[10]   JunB is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-2 [J].
Chalaux, E ;
López-Rovira, T ;
Rosa, JL ;
Bartrons, R ;
Ventura, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :537-543