Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes

被引:80
作者
Jiang, J. [1 ]
Saito, R.
Sato, K.
Park, J. S.
Samsonidze, Ge. G.
Jorio, A.
Dresselhaus, G.
Dresselhaus, M. S.
机构
[1] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[2] CREST JST, Sendai, Miyagi 9808578, Japan
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[5] MIT, Francis Bitter Natl Magnet Lab, Cambridge, MA 02139 USA
[6] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevB.75.035405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the framework of the tight-binding model, we have developed exciton-photon and exciton-phonon matrix elements for single-wall carbon nanotubes. The formulas for first-order resonance and double-resonance Raman processes are discussed in detail. The lowest-energy excitonic state possesses an especially large exciton-photon matrix element compared to other excitonic states and continuum band states because of its localized wave function with no node. Unlike the free-particle picture, the photon matrix element in the exciton picture shows an inverse diameter dependence but no tube type or chirality dependences. As a result, the optical absorption intensity shows a strong diameter dependence but no tube type or chirality dependences. Moreover, the continuum band edge can be determined from the wave function or exciton-photon matrix element. For the radial breathing mode (RBM) and G-band modes, the phonon matrix elements in the exciton and free-particle pictures are almost the same. As a result, the intensity for the Kataura plots for the RBM or G-band modes by the exciton and free-particle pictures show similar family patterns. However, the excitonic effect has greatly increased the diameter dependence and magnitude of the intensities for the RBM and G band by enhancing the diameter dependence and magnitude of the photon matrix element. Therefore, excitons have to be considered in order to explain the strong diameter dependence of the Raman signal observed experimentally.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Excitons in carbon nanotubes [J].
Ando, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (04) :1066-1073
[2]   Structure-assigned optical spectra of single-walled carbon nanotubes [J].
Bachilo, SM ;
Strano, MS ;
Kittrell, C ;
Hauge, RH ;
Smalley, RE ;
Weisman, RB .
SCIENCE, 2002, 298 (5602) :2361-2366
[3]   Selection rules for one- and two-photon absorption by excitons in carbon nanotubes [J].
Barros, Eduardo B. ;
Capaz, Rodrigo B. ;
Jorio, Ado ;
Samsonidze, Georgii G. ;
Souza, Antonio G. ;
Ismail-Beigi, Sohrab ;
Spataru, Catalin D. ;
Louie, Steven G. ;
Dresselhaus, Gene ;
Dresselhaus, Mildred S. .
PHYSICAL REVIEW B, 2006, 73 (24)
[4]   Excitons in carbon nanotubes:: An ab initio symmetry-based approach -: art. no. 196401 [J].
Chang, E ;
Bussi, G ;
Ruini, A ;
Molinari, E .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :196401-1
[5]   Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy [J].
Chou, SG ;
Plentz, F ;
Jiang, J ;
Saito, R ;
Nezich, D ;
Ribeiro, HB ;
Jorio, A ;
Pimenta, MA ;
Samsonidze, GG ;
Santos, AP ;
Zheng, M ;
Onoa, GB ;
Semke, ED ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW LETTERS, 2005, 94 (12) :1-4
[6]   Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution [J].
Doorn, SK ;
Heller, DA ;
Barone, PW ;
Usrey, ML ;
Strano, MS .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 78 (08) :1147-1155
[7]   Recent advances in carbon nanotube photophysics [J].
Dresselhaus, MS ;
Samsonidze, GG ;
Chou, SG ;
Dresselhaus, G ;
Jiang, J ;
Saito, R ;
Jori, A .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 29 (3-4) :443-446
[8]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[9]   Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes [J].
Dukovic, G ;
Wang, F ;
Song, DH ;
Sfeir, MY ;
Heinz, TF ;
Brus, LE .
NANO LETTERS, 2005, 5 (11) :2314-2318
[10]   Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects [J].
Fantini, C ;
Jorio, A ;
Souza, M ;
Strano, MS ;
Dresselhaus, MS ;
Pimenta, MA .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :147406-1