The Intrinsic Relation between the Dynamic Response and Surface Passivation in Dye-Sensitized Solar Cells Based on Different Electrolytes

被引:27
作者
Liu, Weiqing [2 ]
Kou, Dongxing [1 ]
Cai, Molang [2 ]
Hu, Linhua [2 ]
Sheng, Jiang [2 ]
Tian, Huajun [2 ]
Jiang, Nianquan [1 ]
Dai, Songyuan [2 ]
机构
[1] Wenzhou Univ, Coll Phys & Elect Informat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Key Lab Novel Thin Film Solar Cells, Hefei 230031, Anhui, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
BAND-EDGE MOVEMENT; CHARGE RECOMBINATION; NANOPOROUS TIO2; PHOTOVOLTAGE SPECTROSCOPY; BACK-REACTION; THIN-LAYER; ELECTRODES; TRANSPORT; EFFICIENCY; PERFORMANCE;
D O I
10.1021/jp1003903
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the electrolyte containing Li+ and TBA(+) (tert-n-butylammonium), the band edge movement, trap state distribution, electron recombination and electron transport in dye-sensitized solar cells (DSSCs) before and after TiO2 film surface coating with Yb2O3 is studied in this paper. It is found that whether surface coating could improve the performance of DSSCs depends on the compositions of the electrolytes. After surface coating, the band edge shifts negatively in the Li+ electrolyte, but no significant negative shift was observed in the TBA(+) electrolyte. The changes of the trap state distribution also depend on the combined effects of the electrolytes and surface coating. In both types of electrolytes, the Yb2O3-coated TiO2 film suppresses the recombination and slows down the electron transport. These findings are important for improving the performance of the DSSC using the surface coating, which could explain the reasons why the photoelectric efficiency could not improve by coating, doping, and core-shell TiO2 in DSSCs.
引用
收藏
页码:9965 / 9969
页数:5
相关论文
共 44 条
[1]   Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].
Bisquert, J ;
Vikhrenko, VS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2313-2322
[2]   Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells [J].
Chen, SG ;
Chappel, S ;
Diamant, Y ;
Zaban, A .
CHEMISTRY OF MATERIALS, 2001, 13 (12) :4629-4634
[3]   Core-shell nanoporous electrode for dye sensitized solar cells:: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core [J].
Diamant, Y ;
Chen, SG ;
Melamed, O ;
Zaban, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (09) :1977-1981
[4]   Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy [J].
Dloczik, L ;
Ileperuma, O ;
Lauermann, I ;
Peter, LM ;
Ponomarev, EA ;
Redmond, G ;
Shaw, NJ ;
Uhlendorf, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (49) :10281-10289
[5]   Electrons in nanostructured TiO2 solar cells:: transport, recombination and photovoltaic properties [J].
Frank, AJ ;
Kopidakis, N ;
van de Lagemaat, J .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1165-1179
[6]   Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in nanoporous TiO2 [J].
Gregg, BA ;
Chen, SG ;
Ferrere, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (13) :3019-3029
[7]   Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules [J].
Hu, Linhua ;
Dai, Songyuan ;
Weng, Jian ;
Xiao, Shangfeng ;
Sui, Yifeng ;
Huang, Yang ;
Chen, Shuanghong ;
Kong, Fantai ;
Pan, Xu ;
Liang, Linyun ;
Wang, Kongjia .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (02) :358-362
[8]   Preparation of nanoporous MgO-Coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells [J].
Jung, HS ;
Lee, JK ;
Nastasi, M ;
Lee, SW ;
Kim, JY ;
Park, JS ;
Hong, KS ;
Shin, H .
LANGMUIR, 2005, 21 (23) :10332-10335
[9]   Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems [J].
Kambe, S ;
Nakade, S ;
Kitamura, T ;
Wada, Y ;
Yanagida, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (11) :2967-2972
[10]   Dye-sensitized core-shell nanocrystals:: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide [J].
Kay, A ;
Grätzel, M .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2930-2935