Nonreciprocal microresonators for the miniaturization of optical waveguide isolators

被引:75
作者
Kono, Naoya [1 ]
Kakihara, Kuniaki [1 ]
Saitoh, Kunimasa [1 ]
Koshiba, Masanori [1 ]
机构
[1] Hokkaido Univ, Div Media & Network Technol, Sapporo, Hokkaido 0600814, Japan
来源
OPTICS EXPRESS | 2007年 / 15卷 / 12期
关键词
D O I
10.1364/OE.15.007737
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By introducing nonreciprocal phase shifts into microresonators, we propose new designs for the miniaturization of optical waveguide isolators and circulators. We present detailed design procedures, and numerically demonstrate the operation of these magneto-optical devices. The device sizes can be reduced down to several tens of micrometers. The nonreciprocal function of these devices is due to nonreciprocal resonance shifts. Next, the operation bandwidth can be expanded by increasing the number of resonators ( the filter order). This is demonstrated by comparing the characteristics of a single-resonator structure with those of a three-resonator structure. This paper furthermore presents the nonreciprocal characteristics of three-dimensional resonators with finite heights, leading to a guideline for the design of nonreciprocal optical circuits. This involves a demonstration of how the resonators with selected parameters are practical for miniaturized nonreciprocal circuits. (c) 2007 Optical Society of America.
引用
收藏
页码:7737 / 7751
页数:15
相关论文
共 21 条
[1]   Finite-element analysis of nonreciprocal phase shift for TE modes in magnetooptic rib waveguides with a compensation wall [J].
Bahlmann, N ;
Lohmeyer, M ;
Dötsch, H ;
Hertel, P .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (02) :250-253
[2]   Improved design of magnetooptic rib waveguides for optical isolators [J].
Bahlmann, N ;
Chandrasekhara, V ;
Erdmann, A ;
Gerhardt, R ;
Hertel, P ;
Lehmann, R ;
Salz, D ;
Schroteler, FJ ;
Wallenhorst, M ;
Dotsch, H .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (05) :818-823
[3]   Influence of magnetic field on nonlinear magneto-optical diffraction on two-dimensional hexagonal magnetic bubble lattice [J].
Dadoenkova, NN ;
Lyubchanskii, IL ;
Lyubchanskii, MI ;
Shapovalov, EA ;
Zabolotin, AE ;
Rasing, T .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (01) :215-219
[4]   Waveguide optical isolator based on Mach-Zehnder interferometer [J].
Fujita, J ;
Levy, M ;
Osgood, RM ;
Wilkens, L ;
Dötsch, H .
APPLIED PHYSICS LETTERS, 2000, 76 (16) :2158-2160
[5]  
Grover R, 2002, J LIGHTWAVE TECHNOL, V20, P872
[6]   One-dimensional magnetophotonic crystals [J].
Inoue, M ;
Arai, K ;
Fujii, T ;
Abe, M .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) :5768-5770
[7]   Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends [J].
Kakihara, Kuniaki ;
Kono, Naoya ;
Saitoh, Kunimasa ;
Koshiba, Masanori .
OPTICS EXPRESS, 2006, 14 (23) :11128-11141
[8]   A novel finite-element method for nonreciprocal magneto-photonic crystal waveguides [J].
Kono, N ;
Tsuji, Y .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (07) :1741-1747
[9]   Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems [J].
Koshiba, M ;
Tsuji, Y .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000, 18 (05) :737-743
[10]   Epitaxial liftoff of thin oxide layers: Yttrium iron garnets onto GaAs [J].
Levy, M ;
Osgood, RM ;
Kumar, A ;
Bakhru, H .
APPLIED PHYSICS LETTERS, 1997, 71 (18) :2617-2619