Expressing the operations of quantum computing in multiparticle geometric algebra

被引:56
作者
Somaroo, SS
Cory, DG
Havel, TF
机构
[1] Harvard Univ, Sch Med, BCMP, Boston, MA 02115 USA
[2] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1016/S0375-9601(98)00010-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how the basic operations of quantum computing can be expressed and manipulated in a clear and concise fashion using a multiparticle version of geometric (aka Clifford) algebra. This algebra encompasses the product operator formalism of NMR spectroscopy, and hence its notation leads directly to implementations of these operations via NMR pulse sequences. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 28 条
[1]  
BAYLIS WE, 1996, CLIFFORD GEOMETRIC A
[2]   QUATERNIONS AS A PRACTICAL TOOL FOR THE EVALUATION OF COMPOSITE ROTATIONS [J].
BLUMICH, B ;
SPIESS, HW .
JOURNAL OF MAGNETIC RESONANCE, 1985, 61 (02) :356-362
[3]   ALGEBRAIC FORMULATION OF THE PRODUCT OPERATOR-FORMALISM IN THE NUMERICAL-SIMULATION OF THE DYNAMIC BEHAVIOR OF MULTISPIN SYSTEMS [J].
BOULAT, B ;
RANCE, M .
MOLECULAR PHYSICS, 1994, 83 (05) :1021-1039
[4]  
Brassard G, 1995, LECT NOTES COMPUT SC, V1000, P1
[5]  
COPPERSMITH D, UNPUB
[6]   Ensemble quantum computing by NMR spectroscopy [J].
Cory, DG ;
Fahmy, AF ;
Havel, TF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1634-1639
[7]  
CORY DG, 1997, P NATL ACAD SCI
[8]  
CORY DG, 1997, IN PRESS PHYSICA D
[9]   ANALYTICAL THEORY OF COMPOSITE PULSES [J].
COUNSELL, C ;
LEVITT, MH ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE, 1985, 63 (01) :133-141
[10]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261