Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization

被引:152
作者
Feldermann, A
Coote, ML [1 ]
Stenzel, MH
Davis, TP
Barner-Kowollik, C
机构
[1] Australian Natl Univ, Res Sch Chem, Canberra, ACT 0200, Australia
[2] Univ New S Wales, Sch Chem Engn & Ind Chem, Ctr Adv Macromol Design, Sydney, NSW 2052, Australia
关键词
D O I
10.1021/ja046292b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cumyl dithiobenzoate (CDB)-mediated reversible addition fragmentation chain transfer (RAFT) polymerization of styrene at 30 degreesC is studied via both kinetic experiments and high-level ab initio molecular orbital calculations. The kinetic data clearly indicate the delayed onset of steady-state behavior. Such an observation is consistent with the slow fragmentation model for the RAFT process, but cannot be reconciled with the cross-termination model. The comprehensive failure of the cross-termination model is quantitatively demonstrated in a detailed kinetic analysis, in which the independent influences of the pre-equilibria and main equilibria and the possible chain length dependence of cross-termination are fully taken into account. In contrast, the slow fragmentation model can describe the data, provided the main equilibrium has a large fragmentation constant of at least 8.9 x 10(6) L mol(-1). Such a high equilibrium constant (for both equilibria) is consistent with high-level ab initio quantum chemical calculations (K = 7.3 x 10(6) L mol(-1)) and thus appears to be physically realistic. Given that the addition rate coefficient for macroradicals to (polymeric) RAFT agent is 4 x 10(6) L mol(-1) s(-1), this implies that the lifetime of the RAFT adduct radicals is close to 2.5 s. Since the radical is also kinetically stable to termination, it can thus function as a radical sink in its own right.
引用
收藏
页码:15915 / 15923
页数:9
相关论文
共 59 条
[1]  
BACKSAY GB, UNPUB
[2]   Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by γ radiation [J].
Barner-Kowollik, C ;
Vana, P ;
Quinn, JF ;
Davis, TP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (08) :1058-1063
[3]   Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium [J].
Barner-Kowollik, C ;
Quinn, JF ;
Morsley, DR ;
Davis, TP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (09) :1353-1365
[4]   RAFTing down under: Tales of missing radicals, fancy architectures, and mysterious holes [J].
Barner-Kowollik, C ;
Davis, TP ;
Heuts, JPA ;
Stenzel, MH ;
Vana, P ;
Whittaker, M .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (03) :365-375
[5]   Nano- and micro-engineering of ordered porous blue-light-emitting films by templating well-defined organic polymers around condensing water droplets [J].
Barner-Kowollik, C ;
Dalton, H ;
Davis, TP ;
Stenzel, MH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (31) :3664-3668
[6]   The reversible addition-fragmentation chain transfer process and the strength and limitations of modeling: Comment on "the magnitude of the fragmentation rate coefficient" [J].
Barner-Kowollik, C ;
Coote, ML ;
Davis, TP ;
Radom, L ;
Vana, P .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (18) :2828-2832
[7]   Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate [J].
Barner-Kowollik, C ;
Quinn, JF ;
Nguyen, TLU ;
Heuts, JPA ;
Davis, TP .
MACROMOLECULES, 2001, 34 (22) :7849-7857
[8]   Termination kinetics of free-radical polymerization of styrene over an extended temperature and pressure range [J].
Buback, M ;
Kuchta, FD .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 1997, 198 (05) :1455-1480
[9]   CRITICALLY EVALUATED RATE COEFFICIENTS FOR FREE-RADICAL POLYMERIZATION .1. PROPAGATION RATE COEFFICIENT FOR STYRENE [J].
BUBACK, M ;
GILBERT, RG ;
HUTCHINSON, RA ;
KLUMPERMAN, B ;
KUCHTA, FD ;
MANDERS, BG ;
ODRISCOLL, KF ;
RUSSELL, GT ;
SCHWEER, J .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 1995, 196 (10) :3267-3280
[10]   Evidence for termination of intermediate radical species in RAFT-mediated polymerization [J].
Calitz, FM ;
McLeary, JB ;
McKenzie, JM ;
Tonge, MP ;
Klumperman, B ;
Sanderson, RD .
MACROMOLECULES, 2003, 36 (26) :9687-9690