Reward modulation of prefrontal and visual association cortex during an incentive working memory task

被引:130
作者
Krawczyk, Daniel C.
Gazzaley, Adam
D'Esposito, Mark
机构
[1] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Psychol, Berkeley, CA 94720 USA
关键词
reward; prefrontal cortex; visual association cortex; working memory; motivation;
D O I
10.1016/j.brainres.2007.01.052
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cognitive performance differs with motivation, but little direct evidence exists regarding the neural mechanisms of the influence of reward motivation on working memory (VIM). We tested the effects of motivation on the top-down control in visual Vim. Encoding relevant stimuli for maintenance, while suppressing inappropriate inputs is considered a core process in cognition. Prior functional magnetic resonance imaging (fMRI) results demonstrated that stimulus-specific visual association cortex serves as a marker of activation differences for task-relevant and task-irrelevant inputs, such that enhanced activity occurs when attention is directed to relevant stimuli and suppressed activity occurs when attention is directed away from irrelevant stimuli [Gazzaley, A., Cooney, J., McEvoy, K., Knight, R.T., and D'Esposito, M. J. Cogn. Neurosci. 17, 507-517]. We used fMRI to test whether differential WM performance, indexed by lowered response times on a delayed-recognition task, was associated with amplification of enhancement and suppression effects during stimulus encoding within visual association cortex. Our results indicate that enhancement and suppression are amplified for trials with the highest reward level relative to non-rewarded trials for a scene-selective cortical region. In a face-selective region, similar modulation of enhancement for the highest reward level relative to non-rewarded trials was found. Prefrontal cortex also showed enhanced activity during high reward trials. Overall these results reveal that reward motivation can play a pivotal role in driving performance through top-down signaling in frontal regions involved in WM, as well as visual association regions selective to processing the perceptual inputs of the items to be remembered. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:168 / 177
页数:10
相关论文
共 48 条
[1]   Reward-motivated learning: Mesolimbic activation precedes memory formation [J].
Adcock, R. Alison ;
Thangavel, Arul ;
Whitfield-Gabrieli, Susan ;
Knutson, Brian ;
Gabrieli, John D. E. .
NEURON, 2006, 50 (03) :507-517
[2]  
[Anonymous], 2003, CORTEX MIND
[3]   Prefrontal modulation of visual processing in humans [J].
Barceló, F ;
Suwazono, S ;
Knight, RT .
NATURE NEUROSCIENCE, 2000, 3 (04) :399-403
[4]   Functional imaging of neural responses to expectancy and experience of monetary gains and losses [J].
Breiter, HC ;
Aharon, I ;
Kahneman, D ;
Dale, A ;
Shizgal, P .
NEURON, 2001, 30 (02) :619-639
[5]   Contribution of human prefrontal cortex to delay performance [J].
Chao, LL ;
Knight, RT .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1998, 10 (02) :167-177
[6]   The somatic marker hypothesis and the possible functions of the prefrontal cortex [J].
Damasio, AR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1996, 351 (1346) :1413-1420
[7]   Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations [J].
Delgado, M. R. ;
Locke, H. M. ;
Stenger, V. A. ;
Fiez, J. A. .
COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE, 2003, 3 (01) :27-38
[8]   Dissociable neural responses in human reward systems [J].
Elliott, R ;
Friston, KJ ;
Dolan, RJ .
JOURNAL OF NEUROSCIENCE, 2000, 20 (16) :6159-6165
[9]   FUNCTIONAL INTERACTIONS BETWEEN INFEROTEMPORAL AND PREFRONTAL CORTEX IN A COGNITIVE TASK [J].
FUSTER, JM ;
BAUER, RH ;
JERVEY, JP .
BRAIN RESEARCH, 1985, 330 (02) :299-307
[10]   Top-down enhancement and suppression of the magnitude and speed of neural activity [J].
Gazzaley, A ;
Cooney, JW ;
McEvoy, K ;
Knight, RT ;
D'Esposito, M .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2005, 17 (03) :507-517