Structures with many-valued information and their relational proof theory

被引:3
作者
Düntsch, I [1 ]
MacCaull, W [1 ]
Orlowska, E [1 ]
机构
[1] Univ Ulster, Sch Informat & Software Engn, Jordanstown BT37 0QB, Newtownabbey, North Ireland
来源
30TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS | 2000年
关键词
D O I
10.1109/ISMVL.2000.848635
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a uniform relational framework for developing proof systems for theories of manyvaluedness that may have the form of a logical system, of a class of algebra or of an information system. We outline a construction of proof systems for SH(n) logics, my-algebras and many-valued information systems.
引用
收藏
页码:293 / 301
页数:5
相关论文
共 20 条
[1]  
Belnap N. D., 1977, Modern uses of multiple-valued logics, P8, DOI [10.1007/978-94-010-1161-7_2, DOI 10.1007/978-94-010-1161-7_2]
[2]  
BUSZKOWSKI W, 1997, SERIES STUDIES FUZZI, V13, P347
[3]  
FRIAS M, 1995, LOGIQUE ANAL, V150, P239
[4]  
Hajek P., 1999, METAMATHEMATICS FUZZ
[5]  
ITURRIOZ L, 1983, Z MATH LOGIK, V29, P33, DOI 10.1002/malq.19830290202
[6]  
ITURRIOZ L, 1996, INT C WORK J LUK LUK
[7]  
Konikowska B., 1998, LOG J IGPL, V6, P755
[8]  
KONIKOWSKA B, 1998, P 4 INT SEM REL METH, P138
[9]  
Lipski W., 1976, 3 INT C AUT LANG PRO, P120
[10]  
Lukasiewicz J., 1920, RUCH FILOZOFICZNY, V5, P169