A fredholm determinant formula for Toeplitz determinants

被引:107
作者
Borodin, A [1 ]
Okounkov, A
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF01192827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a formula expressing a general n by n Toeplitz determinant as a Fredholm determinant of an operator 1-K acting on l(2)(n, n + 1, ...), where the kernel K admits an integral representation in terms of the symbol of the original Toeplitz matrix. The proof is based on the results of one of the authors, see [14], and a formula due to Gessel which expands any Toeplitz determinant into a series of Schur functions. We also consider 3 examples where the kernel involves the Gauss hypergeometric function and its degenerations.
引用
收藏
页码:386 / 396
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1953, Higher transcendental functions
[2]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[3]  
BASOR EL, TOEPLITZ DETERMINANT
[4]  
Borodin A, 1998, MATH RES LETT, V5, P799
[5]  
BORODIN A, MATHCO9905032
[6]  
BORODIN A, MATHCO9905189
[7]  
BORODIN A, IN PRESS COMM MATH P
[8]  
Deift P., 1999, Am. Math. Soc. Transl, V189, P69
[9]   SYMMETRIC FUNCTIONS AND P-RECURSIVENESS [J].
GESSEL, IM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :257-285
[10]  
Its A. R., 1990, International Journal of Modern Physics B, V4, P1003, DOI 10.1142/S0217979290000504