Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS

被引:32
作者
Coveney, Seamus [1 ]
Fotheringham, A. Stewart [1 ]
Charlton, Martin [1 ]
McCarthy, Timothy [1 ]
机构
[1] Natl Univ Ireland, Natl Ctr Geocomputat, Maynooth, Kildare, Ireland
基金
爱尔兰科学基金会;
关键词
DEM error; Terrestrial LiDAR DSM; GPS; Coastal flooding; DIGITAL ELEVATION MODELS; SOUTH-EAST ENGLAND; SEA-LEVEL RISE; ERROR PROPAGATION; GRAVEL-BED; IMPACT; VULNERABILITY; UNCERTAINTY; ACCURACY; EROSION;
D O I
10.1016/j.cageo.2009.10.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of medium-resolution photogrammetric-derived Digital Elevation Models (DEMs) to model coastal inundation risk is commonplace in the geosciences. However, these datasets are often characterised by relatively large and loosely defined elevation errors, which can seriously limit their reliability. Post-processed and static RTK dual-frequency GPS data and very high-resolution Terrestrial Laser Scanning DSM data are used here to quantify the magnitude and spatial distribution of elevation error on a 10 km coastal section of a medium-resolution photogrammetric DEM. The validation data are captured at two scales and spatial-resolutions to minimise the risk of spatial bias in the validation results. The strengths and shortcomings of each validation dataset are assessed, and the complimentary value of GPS and Terrestrial Laser Scanning for external validation is demonstrated. Elevation errors highlighted in the photogrammetric DEM are found to be significantly larger than suggested by the data suppliers, with a tendency for the larger errors to occur with increasing proximity to the coastline. The results confirm the unsuitability of the DEM tested for the local spatial modelling of coastal inundation risk, highlighting difficulties that may be prone to occur when similar DEM datasets are used in coastal studies elsewhere. (C) 2010 Published by Elsevier Ltd.
引用
收藏
页码:489 / 499
页数:11
相关论文
共 52 条
[1]  
*ANSI INCITS, 1998, 32 ANSIINCITS
[2]   Validation and comparison of different techniques for the derivation of digital elevation models and volcanic monitoring (Vulcano Island, Italy) [J].
Baldi, P ;
Bonvalot, S ;
Briole, P ;
Coltelli, M ;
Gwinner, K ;
Marsella, M ;
Puglisi, G ;
Rémy, D .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (22) :4783-4800
[3]  
BOLSTAD PV, 1994, PHOTOGRAMM ENG REM S, V60, P1327
[4]  
Brasington J, 2000, EARTH SURF PROC LAND, V25, P973, DOI 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO
[5]  
2-Y
[6]   Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise [J].
Bryan, B ;
Harvey, N ;
Belperio, T ;
Bourman, B .
ENVIRONMENTAL MODELING & ASSESSMENT, 2001, 6 (01) :57-65
[7]  
Chang HC., 2004, APPL REPEAT PASS DIN, P2815
[8]  
Chen K., 2004, J GLOBAL POSITIONING, V3, P95, DOI DOI 10.5081/JGPS.3.1.95
[9]   Image processing of airborne scanning laser altimetry data for improved river flood modelling [J].
Cobby, DM ;
Mason, DC ;
Davenport, IJ .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2001, 56 (02) :121-138
[10]  
Cowell PJ., 2003, MAR GEOD, V26, P5, DOI DOI 10.1080/01490410306700