Effect of node deleting on network structure

被引:24
作者
Deng, Ke [1 ]
Zhao, Heping [1 ]
Li, Dejun [1 ]
机构
[1] Jishou Univ, Dept Phys, Jishou 416000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
node deleting; structure; complex networks;
D O I
10.1016/j.physa.2007.02.039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ever-increasing knowledge of the structure of various real-world networks has uncovered their complex multi-mechanism -governed evolution processes. Therefore, a better understanding of the structure and evolution of these networked complex systems requires us to describe such processes in a more detailed and realistic manner. In this paper, we introduce a new type of network growth rule which comprises addition and deletion of nodes, and propose an evolving network model to investigate the effect of node deleting on network structure. It is found that, with the introduction of node deleting, network structure is significantly transformed. In particular, degree distribution of the network undergoes a transition from scale-free to exponential forms as the intensity of node deleting increases. At the same time, nontrivial disassortative degree correlation develops spontaneously as a natural result of network evolution in the model. We also demonstrate that node deleting introduced in the model does not destroy the connectedness of a growing network so long as the increasing rate of edges is not excessively small. In addition, it is found that node deleting will weaken but not eliminate the small-world effect of a growing network, and generally it will decrease the clustering coefficient in a network. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 726
页数:13
相关论文
共 42 条
[1]   Topology of evolving networks:: Local events and universality [J].
Albert, R ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5234-5237
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[4]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[5]  
[Anonymous], P 21 ANN JOINT C IEE
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   Graph structure in the Web [J].
Broder, A ;
Kumar, R ;
Maghoul, F ;
Raghavan, P ;
Rajagopalan, S ;
Stata, R ;
Tomkins, A ;
Wiener, J .
COMPUTER NETWORKS-THE INTERNATIONAL JOURNAL OF COMPUTER AND TELECOMMUNICATIONS NETWORKING, 2000, 33 (1-6) :309-320
[8]   Robust patterns in food web structure -: art. no. 228102 [J].
Camacho, J ;
Guimerá, R ;
Amaral, LAN .
PHYSICAL REVIEW LETTERS, 2002, 88 (22) :4
[9]   Scaling behaviour of developing and decaying networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
EUROPHYSICS LETTERS, 2000, 52 (01) :33-39
[10]   Evolution of networks with aging of sites [J].
Dorogovtsev, SN ;
Mendes, JFF .
PHYSICAL REVIEW E, 2000, 62 (02) :1842-1845