Binary fluids with long range segregating interaction. I: Derivation of kinetic and hydrodynamic equations

被引:32
作者
Bastea, S
Esposito, R
Lebowitz, JL
Marra, R
机构
[1] Univ Calif Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[3] Rutgers State Univ, Dept Math & Phys, New Brunswick, NJ 08903 USA
[4] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[5] Univ Roma Tor Vergata, Unita INFM, I-00133 Rome, Italy
关键词
binary fluids; phase segregation; kinetic and hydrodynamic equations; long-range interactions;
D O I
10.1023/A:1026481706240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the evolution of a two component fluid consisting of "blue" and ''red" particles which interact via strong short range (hard core) and weak long range pair potentials. At low temperatures the equilibrium state of the system is one in which there are two coexisting phases. Under suitable choices of space-time scalings and system parameters we first obtain (formally) a mesoscopic kinetic Vlasov-Boltzmann equation for the one particle position and velocity distribution functions, appropriate for a description of the phase segregation kinetics in this system, Further scalings then yield Vlasov-Euler and incompressible Vlasov-Navier-Stokes equations. We also obtain, via the usual truncation of the Chapman-Enskog expansion, compressible Vlasov-Navier-Stokes equations.
引用
收藏
页码:1087 / 1136
页数:50
相关论文
共 32 条
[1]   A CONSISTENT BOLTZMANN ALGORITHM [J].
ALEXANDER, FJ ;
GARCIA, AL ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1995, 74 (26) :5212-5215
[2]   Spinodal decomposition in binary gases [J].
Bastea, S ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1997, 78 (18) :3499-3502
[3]  
BASTEA S, UNPUB
[4]  
Caflisch R. E., 1987, Transport Theory and Statistical Physics, V16, P701, DOI 10.1080/00411458708204310
[5]   THE FLUID DYNAMIC LIMIT OF THE NON-LINEAR BOLTZMANN-EQUATION [J].
CAFLISCH, RE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :651-666
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]   BOLTZMANN-EQUATION FOR RIGID SPHERES [J].
CERCIGNANI, C .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 1972, 2 (03) :211-+
[8]  
Cercignani C, 1994, MATH THEORY DILUTE G
[9]  
Chapman S., 1970, MATH THEORY NONUNIFO
[10]   INCOMPRESSIBLE NAVIER-STOKES AND EULER LIMITS OF THE BOLTZMANN-EQUATION [J].
DEMASI, A ;
ESPOSITO, R ;
LEBOWITZ, JL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1189-1214