A note on the efficient implementation of implicit methods for ODEs

被引:16
作者
Amodio, P
Brugnano, L
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
implicit methods for ODEs; modified Newton iteration; splittings;
D O I
10.1016/S0377-0427(97)00167-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of implicit methods for ODEs, e.g. implicit Runge-Kutta schemes, requires the solution of nonlinear systems of algebraic equations of dimension s.m, where m is the size of the continuous differential problem to be approximated. Usually, the solution of this system represents the most time-consuming section in the implementation of such methods. Consequently, the efficient solution of this section would improve their performance. In this paper, we propose a new iterative procedure to solve such equations on sequential computers.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 8 条
[1]  
BRUGNANO L, 1997, APPL NUMER MATH, V25, P1
[2]  
BRUGNANO L, 1997, SOLVING DIFFERENTIAL
[3]  
Burrage K., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P22, DOI 10.1007/BF01947741
[4]  
Butcher J. C., 1976, BIT (Nordisk Tidskrift for Informationsbehandling), V16, P237, DOI 10.1007/BF01932265
[5]  
Hairer E., 1991, SPRINGER SERIES COMP, V14
[6]  
Norsett S. P., 1976, BIT (Nordisk Tidskrift for Informationsbehandling), V16, P388, DOI 10.1007/BF01932722
[7]   Triangularly implicit iteration methods for ODE-IVP solvers [J].
VanderHouwen, PJ ;
DeSwart, JJB .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :41-55
[8]   Parallel linear system solvers for Runge-Kutta methods [J].
vanderHouwen, PJ ;
deSwart, JJB .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (1-2) :157-181