Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation

被引:408
作者
Liu, KH
Tsay, YF
机构
[1] Acad Sinica, Inst Mol Biol, Taipei, Taiwan
[2] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
关键词
affinity; Arabidopsis; nitrate; phosphorylation; transporter; ARABIDOPSIS-THALIANA; K+ CHANNEL; MOLECULAR-CLONING; FUNCTIONAL-CHARACTERIZATION; EXPRESSION CLONING; POTASSIUM CHANNEL; MEMBRANE TOPOLOGY; PROTEIN; GENE; ENCODES;
D O I
10.1093/emboj/cdg118
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To counteract fluctuating nutrient environments, plants have evolved high- and low-affinity uptake systems. These two systems were traditionally thought to be genetically distinct, but, recently, two Arabidopsis transporters, AtKUP1 and CHL1, were shown to have dual affinities. However, little is known about how a dual-affinity transporter works and the advantages of having a dual-affinity transporter. This study demonstrates that, in the case of CHL1, switching between the two modes of action is regulated by phosphorylation at threonine residue 101; when phosphorylated, CHL1 functions as a high-affinity nitrate transporter, whereas, when dephosphorylated, it functions as a low-affinity nitrate transporter. This regulatory mechanism allows plants to change rapidly between high- and low-affinity nitrate uptake, which may be critical when competing for limited nitrogen. These results demonstrate yet another regulatory role of phosphorylation in plant physiology.
引用
收藏
页码:1005 / 1013
页数:9
相关论文
共 52 条
  • [1] ADAN CC, 2000, PLANT PHYSIOL, V124, P1728
  • [2] FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE
    ANDERSON, JA
    HUPRIKAR, SS
    KOCHIAN, LV
    LUCAS, WJ
    GABER, RF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) : 3736 - 3740
  • [3] [Anonymous], 1987, ANN BOT, DOI DOI 10.1093/AOB/MCH063
  • [4] Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
    Kaul, S
    Koo, HL
    Jenkins, J
    Rizzo, M
    Rooney, T
    Tallon, LJ
    Feldblyum, T
    Nierman, W
    Benito, MI
    Lin, XY
    Town, CD
    Venter, JC
    Fraser, CM
    Tabata, S
    Nakamura, Y
    Kaneko, T
    Sato, S
    Asamizu, E
    Kato, T
    Kotani, H
    Sasamoto, S
    Ecker, JR
    Theologis, A
    Federspiel, NA
    Palm, CJ
    Osborne, BI
    Shinn, P
    Conway, AB
    Vysotskaia, VS
    Dewar, K
    Conn, L
    Lenz, CA
    Kim, CJ
    Hansen, NF
    Liu, SX
    Buehler, E
    Altafi, H
    Sakano, H
    Dunn, P
    Lam, B
    Pham, PK
    Chao, Q
    Nguyen, M
    Yu, GX
    Chen, HM
    Southwick, A
    Lee, JM
    Miranda, M
    Toriumi, MJ
    Davis, RW
    [J]. NATURE, 2000, 408 (6814) : 796 - 815
  • [5] BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
  • [6] PKA-mediated phosphorylation of the human KATP channel:: separate roles of Kir6.2 and SUR1 subunit phosphorylation
    Béguin, P
    Nagashima, K
    Nishimura, M
    Gonoi, T
    Seino, S
    [J]. EMBO JOURNAL, 1999, 18 (17) : 4722 - 4732
  • [7] Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons
    Bibb, JA
    Snyder, GL
    Nishi, A
    Yan, Z
    Meijer, L
    Fienberg, AA
    Tsai, LH
    Kwon, YT
    Girault, JA
    Czernik, AJ
    Huganir, RL
    Hemmings, HC
    Nairn, AC
    Greengard, P
    [J]. NATURE, 1999, 402 (6762) : 669 - 671
  • [8] Biogenic amine transporters: regulation in flux
    Blakely, RD
    Bauman, AL
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2000, 10 (03) : 328 - 336
  • [9] Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter
    Boll, M
    Herget, M
    Wagener, M
    Weber, WM
    Markovich, D
    Biber, J
    Clauss, W
    Murer, H
    Daniel, H
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (01) : 284 - 289
  • [10] Cell biology - Channels as enzymes
    Cahalan, MD
    [J]. NATURE, 2001, 411 (6837) : 542 - 543