Learning the nonlinearity of neurons from natural visual stimuli

被引:19
作者
Kayser, C [1 ]
Körding, KP [1 ]
König, P [1 ]
机构
[1] Univ Zurich, ETH Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
关键词
D O I
10.1162/08997660360675026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning in neural networks is usually applied to parameters related to linear kernels and keeps the nonlinearity of the model fixed. Thus, for successful models, properties and parameters of the nonlinearity have to be specified using a priori knowledge, which often is missing. Here, we investigate adapting the nonlinearity simultaneously with the linear kernel. We use natural visual stimuli for training a simple model of the visual system. Many of the neurons converge to an energy detector matching existing models of complex cells. The overall distribution of the parameter describing the nonlinearity well matches recent physiological results. Controls with randomly shuffled natural stimuli and pink noise demonstrate that the match of simulation and experimental results depends on the higher-order statistical properties of natural stimuli.
引用
收藏
页码:1751 / 1759
页数:9
相关论文
共 27 条
[1]   SPATIOTEMPORAL ENERGY MODELS FOR THE PERCEPTION OF MOTION [J].
ADELSON, EH ;
BERGEN, JR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (02) :284-299
[2]   Neural mechanisms for processing binocular information I. Simple cells [J].
Anzai, A ;
Ohzawa, I ;
Freeman, RD .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (02) :891-908
[3]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[4]   STATISTICS OF NATURAL TIME-VARYING IMAGES [J].
DONG, DW ;
ATICK, JJ .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1995, 6 (03) :345-358
[5]   Learning the invariance properties of complex cells from their responses to natural stimuli [J].
Einhäuser, W ;
Kayser, C ;
König, P ;
Körding, KP .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2002, 15 (03) :475-486
[6]   Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain [J].
Escabi, MA ;
Schreiner, CE .
JOURNAL OF NEUROSCIENCE, 2002, 22 (10) :4114-4131
[7]   Independent component analysis: A flexible nonlinearity and decorrelating manifold approach [J].
Everson, R ;
Roberts, S .
NEURAL COMPUTATION, 1999, 11 (08) :1957-1983
[8]   Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity [J].
Field, GD ;
Rieke, F .
NEURON, 2002, 34 (05) :773-785
[9]   Learning Invariance from Transformation Sequences [J].
Foldiak, Peter .
NEURAL COMPUTATION, 1991, 3 (02) :194-200
[10]  
GHANZAFAR AA, 2001, EXP BRAIN RES, V141, P88