TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation

被引:168
作者
Amaral, Michelle D.
Pozzo-Miller, Lucas
机构
[1] Univ Alabama Birmingham, Dept Neurobiol, Civitan Int Res Ctr, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, McKnight Brain Inst, Birmingham, AL 35294 USA
关键词
CA1 pyramidal neuron; hippocampus; TrkB receptor; biolistic transfection; surface biotinylation; confocal microscopy; organotypic slice culture; siRNA-mediated knockdown; theta-burst stimulation;
D O I
10.1523/JNEUROSCI.5499-06.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain-derived neurotrophic factor (BDNF) exerts prominent effects on hippocampal neurons, but the mechanisms that initiate its actions are poorly understood. We report here that BDNF evokes a slowly developing and sustained nonselective cationic current (IBDNF) in CA1 pyramidal neurons. These responses require phospholipase C, IP3 receptors, Ca2+ stores, and Ca2+ influx, suggesting the involvement of transient receptor potential canonical subfamily (TRPC) channels. Indeed, IBDNF is absent after small interfering RNA-mediated TRPC3 knockdown. The sustained kinetics of IBDNF appears to depend on phosphatidylinositol 3-kinase-mediated TRPC3 membrane insertion, as shown by surface biotinylation assays. Slowly emerging membrane currents after theta burst stimulation are sensitive to the scavenger TrkB-IgG and TRPC inhibitors, suggesting IBDNF activation by evoked released of endogenous, native BDNF. Last, TRPC3 channels are necessary for BDNF to increase dendritic spine density. Thus, TRPC channels emerge as novel mediators of BDNF-mediated dendritic remodeling through the activation of a slowly developing and sustained membrane depolarization.
引用
收藏
页码:5179 / 5189
页数:11
相关论文
共 68 条
  • [1] Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and calmodulin
    Agell, N
    Bachs, O
    Rocamora, N
    Villalonga, P
    [J]. CELLULAR SIGNALLING, 2002, 14 (08) : 649 - 654
  • [2] ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons
    Alonso, M
    Medina, JH
    Pozzo-Miller, L
    [J]. LEARNING & MEMORY, 2004, 11 (02) : 172 - 178
  • [3] A NOVEL VOLTAGE-DEPENDENT CATION CURRENT IN RAT NEOCORTICAL NEURONS
    ALZHEIMER, C
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479 (02): : 199 - 205
  • [4] Transient receptor potential channels as novel effectors of brain-derived neurotrophic factor signaling: Potential implications for Rett syndrome
    Amaral, Michelle D.
    Chapleau, Christopher A.
    Pozzo-Miller, Lucas
    [J]. PHARMACOLOGY & THERAPEUTICS, 2007, 113 (02) : 394 - 409
  • [5] Balkowiec A, 2002, J NEUROSCI, V22, P10399
  • [6] THE TRK FAMILY OF NEUROTROPHIN RECEPTORS
    BARBACID, M
    [J]. JOURNAL OF NEUROBIOLOGY, 1994, 25 (11): : 1386 - 1403
  • [7] Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones
    Bengtson, CP
    Tozzi, A
    Bernardi, G
    Mercuri, NB
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2004, 555 (02): : 323 - 330
  • [8] BDNF AND NT-3 INDUCE INTRACELLULAR CA2+ ELEVATION IN HIPPOCAMPAL-NEURONS
    BERNINGER, B
    GARCIA, DE
    INAGAKI, N
    HAHNEL, C
    LINDHOLM, D
    [J]. NEUROREPORT, 1993, 4 (12) : 1303 - 1306
  • [9] Rapid vesicular translocation and insertion of TRP channels
    Bezzerides, VJ
    Ramsey, IS
    Kotecha, S
    Greka, A
    Clapham, DE
    [J]. NATURE CELL BIOLOGY, 2004, 6 (08) : 709 - 720
  • [10] On the molecular basis and regulation of cellular capacitative calcium entry: Roles for Trp proteins
    Birnbaumer, L
    Zhu, X
    Jiang, MS
    Boulay, G
    Peyton, M
    Vannier, B
    Brown, D
    Platano, D
    Sadeghi, H
    Stefani, E
    Birnbaumer, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) : 15195 - 15202