Charging energy, self-interaction correction and transport energy gap for a nanogap organic molecular junction

被引:22
作者
Abad, E. [1 ]
Gonzalez, C. [2 ]
Ortega, J. [1 ]
Flores, F. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[2] CSIC, Inst Ciencia Mat Madrid, Dept Superficies & Recubrimientos, E-28049 Madrid, Spain
关键词
C-60; Charge neutrality level; Self-interaction correction; METAL; CONDUCTANCE; SPECTROSCOPY; INTERFACES; SURFACES; DIPOLE;
D O I
10.1016/j.orgel.2009.11.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A C-60 molecule sandwiched between two Au(111) based tips is used as a model system to analyze the formation of nanogap molecular junctions including charging effects and self-interaction corrections. In our approach, we combine a DFT-LDA calculation of the structural and electronic properties of the system with an analysis of the interface barrier formation based on the charge transfer and the organic Charge Neutrality Level, as described by the Induced Density of Interface States model. This allows us to determine, as a function of the tip/C-60 distance, the self-interaction correction to the frontier molecular orbitals levels, the transport energy gap and the metal/organic barrier height. Our approach offers a fully consistent technique for analyzing a metal/organic interface at the molecular level. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 337
页数:6
相关论文
共 47 条
[1]   Dipoles and band alignment for benzene/Au(111) and C60/Au(111) interfaces [J].
Abad, E. ;
Ortega, J. ;
Dappe, Y. J. ;
Flores, F. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 95 (01) :119-124
[2]  
[Anonymous], Jmol: an open-source Java viewer for chemical structures in 3D
[3]   Exchangelike effects for closed-shell adsorbates:: Interface dipole and work function -: art. no. 096104 [J].
Bagus, PS ;
Staemmler, V ;
Wöll, C .
PHYSICAL REVIEW LETTERS, 2002, 89 (09) :961041-961044
[4]   Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics [J].
Basanta, M. A. ;
Dappe, Y. J. ;
Jelinek, P. ;
Ortega, J. .
COMPUTATIONAL MATERIALS SCIENCE, 2007, 39 (04) :759-766
[5]   Barrier formation at organic interfaces in a Cu(100)-benzenethiolate-pentacene heterostructure [J].
Betti, M. G. ;
Kanjilal, A. ;
Mariani, C. ;
Vazquez, H. ;
Dappe, Y. J. ;
Ortega, J. ;
Flores, F. .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[6]   Measurement of single-molecule conductance [J].
Chen, Fang ;
Hihath, Joshua ;
Huang, Zhifeng ;
Li, Xiulan ;
Tao, N. J. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2007, 58 (58) :535-564
[7]   Characterization of the interface dipole at organic/metal interfaces [J].
Crispin, X ;
Geskin, V ;
Crispin, A ;
Cornil, J ;
Lazzaroni, R ;
Salaneck, WR ;
Brédas, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (27) :8131-8141
[8]   Reproducible measurement of single-molecule conductivity [J].
Cui, XD ;
Primak, A ;
Zarate, X ;
Tomfohr, J ;
Sankey, OF ;
Moore, AL ;
Moore, TA ;
Gust, D ;
Harris, G ;
Lindsay, SM .
SCIENCE, 2001, 294 (5542) :571-574
[9]   Polycyclic aromates on close-packed metal surfaces: functionalization, molecular chemisorption and organic epitaxy [J].
Eremtchenko, M ;
Bauer, D ;
Schaefer, JA ;
Tautz, FS .
NEW JOURNAL OF PHYSICS, 2004, 6
[10]   Modelling energy level alignment at organic interfaces and density functional theory [J].
Flores, F. ;
Ortega, J. ;
Vazquez, H. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (39) :8658-8675