Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene

被引:173
作者
Lu, Y
Zhu, ZP [1 ]
Liu, ZY
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
graphitic carbon; pyrolysis; electron microscopy; Raman spectroscopy; X-ray diffraction;
D O I
10.1016/j.carbon.2004.09.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-encapsulated Fe nanoparticles with size between 5 and 20 nm were synthesized via a picric acid-detonation-induced pyrolysis of ferrocene, which is characterized by a self-heating and extremely fast process. The nanoparticles exhibit well-constructed core-shell structures, with bcc-Fe cores and graphitic shells. The graphitic shells can protect effectively the cores against the attack of HNO3 solution. The formation of the core-shell nanoparticles can be selectively controlled by adjusting the composition of the picric acid-ferrocene mixture, which determines C/Fe atomic ratio of the reaction system. The core-shell nanoparticles are preferably formed at low C/Fe atomic ratios, while tubular structures are formed at high C/Fe ratio. The possible pathway for the carbon-encapsulated Fe nanoparticles formation is discussed briefly. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 374
页数:6
相关论文
共 38 条
[1]   RAMAN-SPECTROSCOPY OF CLOSED-SHELL CARBON PARTICLES [J].
BACSA, WS ;
DEHEER, WA ;
UGARTE, D ;
CHATELAIN, A .
CHEMICAL PHYSICS LETTERS, 1993, 211 (4-5) :346-352
[2]   KINETICS OF MESOPHASE FORMATION IN A STIRRED-TANK REACTOR AND PROPERTIES OF THE PRODUCTS .5. CATALYSIS BY FERROCENE [J].
BERNHAUER, M ;
BRAUN, M ;
HUTTINGER, KJ .
CARBON, 1994, 32 (06) :1073-1085
[3]   Large-area synthesis of carbon nanofibres at room temperature [J].
Boskovic, BO ;
Stolojan, V ;
Khan, RUA ;
Haq, S ;
Silva, SRP .
NATURE MATERIALS, 2002, 1 (03) :165-168
[4]  
CHESNOKOV VV, 1987, KINET CATAL+, V28, P353
[5]   CONTROLLED-SIZE NANOCAPSULES [J].
DRAVID, VP ;
HOST, JJ ;
TENG, MH ;
ELLIOT, B ;
HWANG, JH ;
JOHNSON, DL ;
MASON, TO ;
WEERTMAN, JR .
NATURE, 1995, 374 (6523) :602-602
[6]   CARBON INTERACTION WITH NICKEL SURFACES - MONOLAYER FORMATION AND STRUCTURAL STABILITY [J].
EIZENBERG, M ;
BLAKELY, JM .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (08) :3467-3477
[7]   CCVD synthesis and characterization of cobalt-encapsulated nanoparticles [J].
Flahaut, E ;
Agnoli, F ;
Sloan, J ;
O'Connor, C ;
Green, MLH .
CHEMISTRY OF MATERIALS, 2002, 14 (06) :2553-2558
[8]   Catalytic growth of single-wall carbon nanotubes from metal particles [J].
Hafner, JH ;
Bronikowski, MJ ;
Azamian, BR ;
Nikolaev, P ;
Rinzler, AG ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) :195-202
[9]   CARBON SEGREGATION TO SINGLE-CRYSTAL SURFACES OF PT,PD AND CO [J].
HAMILTON, JC ;
BLAKELY, JM .
SURFACE SCIENCE, 1980, 91 (01) :199-217
[10]   A simple technique for the synthesis of filled carbon nanoparticles [J].
Harris, PJF ;
Tsang, SC .
CHEMICAL PHYSICS LETTERS, 1998, 293 (1-2) :53-58