Surface tension in Ising systems with Kac potentials

被引:60
作者
Alberti, G
Bellettini, G
Cassandro, M
Presutti, E
机构
[1] UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY
[2] UNIV ROMA TOR VERGATA,DIPARTMENTO MATEMAT,ROME,ITALY
关键词
interfaces; Kac potentials; surface tension; Gamma-convergence;
D O I
10.1007/BF02179792
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an Ising spin system with Kac potentials in a torus of Z(d), d greater than or equal to 2, and fix the temperature below its Lebowitz-Penrose critical value. We prove that when the Kac scaling parameter gamma vanishes, the log of the probability of an interface becomes proportional to its area and the surface tension, related to the proportionality constant, converges to the van der Waals surface tension. The results are based on the analysis of the rate functionals for Gibbsian large deviations and on the proof that they Gamma-converge to the perimeter functional of geometric measure theory (which extends the notion of area). Our considerations include nonsmooth interfaces, proving that the Gibbsian probability of an interface depends only on its area and not on its regularity.
引用
收藏
页码:743 / 796
页数:54
相关论文
共 31 条
[1]  
[Anonymous], 1972, FRONTIERE ORIENTATE
[2]  
[Anonymous], 1978, METHODS MODERN MATH
[3]  
BELLETTINI G, 1995, CONSTRAINED MINIMA N
[4]   ON THE SURFACE-TENSION OF LATTICE SYSTEMS [J].
BRICMONT, J ;
LEBOWITZ, JL ;
PFISTER, CE .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1980, 337 (JUN) :214-223
[5]   INTERFACES AND TYPICAL GIBBS CONFIGURATIONS FOR ONE-DIMENSIONAL KAC POTENTIALS [J].
CASSANDRO, M ;
ORLANDI, E ;
PRESUTTI, E .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (01) :57-96
[6]  
Dal Maso G., 1993, INTRO GAMMA CONVERGE
[7]  
DALPASSO R, 1991, HEAT EQUATION NONLOC
[8]  
De Giorgi E., 1975, Atti della Accad. Nazionale dei Lincei. Cl. Sci. Fis. Mat. Natur. Rend. Ser, V58, P842
[9]  
De Masi A., 1994, REND MAT APPL, V14, P693
[10]  
DEGROMARD TQ, 1985, CR ACAD SCI I-MATH, V301, P261