The reliability of vegetation indices for monitoring saltmarsh vegetation cover

被引:68
作者
Eastwood, JA [1 ]
Yates, MG [1 ]
Thomson, AG [1 ]
Fuller, RM [1 ]
机构
[1] Inst Terr Ecol, Huntingdon PE17 2LS, Cambs, England
基金
英国自然环境研究理事会;
关键词
D O I
10.1080/014311697216739
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The dynamic nature of saltmarshes poses a challenge for coastal zone monitoring; natural variability in the sediment reflectance and atmospheric visibility within saltmarsh environment affects the reliability of regression relations between vegetation cover and vegetation indices. Analysis of field data indicates that regression equations should only be applied to sparse canopies. Mixture modelling and signal-to-noise analysis show that resistance to sediment reflectance variability is more important than resistance to atmospheric visibility changes. Therefore MSAVI and GEMI are the best indices to use for saltmarsh vegetation cover monitoring.
引用
收藏
页码:3901 / 3907
页数:7
相关论文
共 8 条
  • [1] HUETE A R, 1988, Remote Sensing of Environment, V25, P295
  • [2] ATMOSPHERICALLY RESISTANT VEGETATION INDEX (ARVI) FOR EOS-MODIS
    KAUFMAN, YJ
    TANRE, D
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (02): : 261 - 270
  • [3] Leprieur C., 1994, Remote Sens. Rev, V10, P265, DOI [DOI 10.1080/02757259409532250, 10.1080/02757259409532250]
  • [4] GEMI - A NONLINEAR INDEX TO MONITOR GLOBAL VEGETATION FROM SATELLITES
    PINTY, B
    VERSTRAETE, MM
    [J]. VEGETATIO, 1992, 101 (01): : 15 - 20
  • [5] A MODIFIED SOIL ADJUSTED VEGETATION INDEX
    QI, J
    CHEHBOUNI, A
    HUETE, AR
    KERR, YH
    SOROOSHIAN, S
    [J]. REMOTE SENSING OF ENVIRONMENT, 1994, 48 (02) : 119 - 126
  • [6] QI J, 1994, 6 INT S PHYS MEAS SI, P723
  • [7] Vermote E., 1995, 2 SIMULATION SATELLI
  • [8] Designing optimal spectral indexes for remote sensing applications
    Verstraete, MM
    Pinty, B
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (05): : 1254 - 1265