Basic helix-loop-helix transcription factor epicardin/capsulin/Pod-1 suppresses differentiation by negative regulation of transcription

被引:51
作者
Funato, N [1 ]
Ohyama, K [1 ]
Kuroda, T [1 ]
Nakamura, M [1 ]
机构
[1] Tokyo Med & Dent Univ, Human Gene Sci Ctr, Bunkyo Ku, Tokyo 1138510, Japan
关键词
D O I
10.1074/jbc.M212248200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epicardin/capsulin/Pod-1, expressed in skeletal myo-blasts within brachial arches and in the condensing mesenchyme, is a member of the basic helix-loop-helix (bHLH) transcription factor family that is involved in various cell differentiation processes. In this study, we examined the functional properties of epicardin/capsulin/Pod-1 in differentiation. The yeast and mammalian two-hybrid systems showed physical associations between epicardin/capsulin/Pod-1 and E2A, both of which were present in the nuclei. The bHLH domains mediated this association. Ectopic expression of epicardin/capsulin/Pod-1 inhibited E2A-dependent activation of the exogenous and endogenous expression of the cyclin-dependent kinase inhibitor, p21(WAF1/Cip1) gene, and the muscle creatine kinase gene that encodes the predominant creatine kinase isoform. expressed in mammalian skeletal muscle. Transfection with epicardin/capsulin/Pod-1 small interfering RNA abolished the epicardin/capsulin/Pod-1-mediated suppression of E12-dependent activation of the p21 promoter. Chromatin immunoprecipitation assay showed that epicardin/capsulin/Pod-1 was physically associated with the muscle creatine kinase promoter in vivo. Moreover, terminal differentiation of C2C12 myoblasts was inhibited by exogenous introduction of epicardin/capsulin/Pod-1. These inhibitory functions of epicardin/capsulin/Pod-1 closely resemble those of the bHLH inhibitor Twist protein. These results indicate that epicardin/capsulin/Pod-1 functions as a negative regulator of differentiation of myoblasts through transcription in at least two distinct steps, cell growth arrest and lineage-specific differentiation.
引用
收藏
页码:7486 / 7493
页数:8
相关论文
共 58 条
[1]   Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis [J].
Andres, V ;
Walsh, K .
JOURNAL OF CELL BIOLOGY, 1996, 132 (04) :657-666
[2]   THE PROTEIN ID - A NEGATIVE REGULATOR OF HELIX-LOOP-HELIX DNA-BINDING PROTEINS [J].
BENEZRA, R ;
DAVIS, RL ;
LOCKSHON, D ;
TURNER, DL ;
WEINTRAUB, H .
CELL, 1990, 61 (01) :49-59
[3]   Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression [J].
Bergstrom, DA ;
Penn, BH ;
Strand, A ;
Perry, RLS ;
Rudnicki, MA ;
Tapscott, SJ .
MOLECULAR CELL, 2002, 9 (03) :587-600
[4]  
CHAKRABORTY T, 1991, J BIOL CHEM, V266, P2878
[5]   REGULATION OF CREATINE-KINASE INDUCTION IN DIFFERENTIATING MOUSE MYOBLASTS [J].
CHAMBERLAIN, JS ;
JAYNES, JB ;
HAUSCHKA, SD .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (03) :484-492
[6]   INACTIVATION OF P53 GENE IN HUMAN AND MURINE OSTEOSARCOMA CELLS [J].
CHANDAR, N ;
BILLIG, B ;
MCMASTER, J ;
NOVAK, J .
BRITISH JOURNAL OF CANCER, 1992, 65 (02) :208-214
[7]   Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis [J].
Chen, L ;
Adar, R ;
Yang, X ;
Monsonego, EO ;
Li, CL ;
Hauschka, PV ;
Yayon, A ;
Deng, CX .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (11) :1517-1525
[8]   TWIST IS REQUIRED IN HEAD MESENCHYME FOR CRANIAL NEURAL-TUBE MORPHOGENESIS [J].
CHEN, ZF ;
BEHRINGER, RR .
GENES & DEVELOPMENT, 1995, 9 (06) :686-699
[9]   TRANSFORMING GROWTH-FACTOR-BETA INDUCES THE CYCLIN-DEPENDENT KINASE INHIBITOR P21 THROUGH A P53-INDEPENDENT MECHANISM [J].
DATTO, MB ;
LI, Y ;
PANUS, JF ;
HOWE, DJ ;
XIONG, Y ;
WANG, XF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (12) :5545-5549
[10]  
DEAR TN, 1995, DEVELOPMENT, V121, P2909