Windings of the 2D free Rouse chain

被引:6
作者
Bénichou, O
Desbois, J
机构
[1] Univ Paris Sud, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[2] UPMC, Phys Theor Liquides Lab, F-75252 Paris 05, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 38期
关键词
D O I
10.1088/0305-4470/33/38/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the long-time dynamical properties of a chain of harmonically bound Brownian particles. This chain is allowed to wander everywhere in the plane. We show that the scaling variables for the occupation times T-j, areas A(j) and winding angles theta (j) (j = 1 , . . . , n labels the particles) take the same general form as in the usual Brownian motion. We also compute the asymptotic joint laws P({T-j}), P({A(j)}), P({theta (j)}) and discuss the correlations occurring in those distributions.
引用
收藏
页码:6655 / 6667
页数:13
相关论文
共 21 条
[1]  
BENICHOU O, 2000, IN PRESS J STAT PHYS
[2]  
BENICHOU O, 2000, UNPUB
[3]   THE RANDOM-WALK WINDING NUMBER PROBLEM - CONVERGENCE TO A DIFFUSION PROCESS WITH EXCLUDED AREA [J].
BERGER, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17) :5949-5960
[4]   A TOPOLOGICAL PROBLEM IN POLYMER PHYSICS - CONFIGURATIONAL AND MECHANICAL-PROPERTIES OF A RANDOM-WALK ENCLOSING A CONSTANT AREA [J].
BRERETON, MG ;
BUTLER, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12) :3955-3968
[5]   ASYMPTOTIC WINDING ANGLE DISTRIBUTIONS FOR PLANAR BROWNIAN-MOTION WITH DRIFT [J].
COMTET, A ;
DESBOIS, J ;
MONTHUS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21) :5637-5643
[6]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[7]   PERTURBATIVE ANYON GAS [J].
DEVEIGY, AD ;
OUVRY, S .
NUCLEAR PHYSICS B, 1992, 388 (03) :715-755
[8]  
Doi M., 1986, The Theory of Polymer Dynamics
[9]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN
[10]  
GROSBERG AY, 1994, STAT PHSYICS MACROMO