Developmentally regulated histone modifications in Drosophila follicle cells:: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation

被引:41
作者
Hartl, Tom
Boswell, Carl
Orr-Weaver, Terry L.
Bosco, Giovanni [1 ]
机构
[1] Univ Arizona, Arizona Canc Ctr, Dept Mol & Cellular Biol, Tucson, AZ 85724 USA
[2] MIT, Dept Biol, Whitehead Inst, Cambridge, MA 02142 USA
关键词
D O I
10.1007/s00412-006-0092-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have used gene amplification in Drosophila follicle cells as a model of metazoan DNA replication to address whether changes in histone modifications are associated with replication origin activation. We observe that replication initiation is associated with distinct histone modifications. Acetylated lysines K5, K8, and K12 on histone H4 and K14 on histone H3 are specifically enriched during replication initiation at the amplification origins. Strikingly, H4 acetylation persists at an amplification origin well after replication forks have progressed significantly outward from the origin, indicating that H4 acetylation is associated with origin regulation and not histone deposition at the replication forks. Origin recognition complex subunit 2 (orc2) mutants with severe amplification defects do not abolish H4 acetylation, whereas the dup/cdt1 mutant delays the appearance of acetylation foci, and mutants in rbf result in temporal persistence. These data indicate that core histone acetylation is associated with origin activity. Furthermore, follicle cells undergoing gene amplification exhibit high levels of histone H1 phosphorylation. The patterns of H1 phosphorylation provide insights into cell cycle states during amplification, as H1 kinase activity in follicle cells is responsive to high Cyclin E activity, and it can be abolished by overexpressing the retinoblastoma homolog, Rbf, that represses Cyclin E. These data suggest that amplification origins are able to initiate when the cells are in a late S-phase, when the genome is normally not licensed for replication.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 58 条
[1]   Chromatin regulates origin activity in Drosophila follicle cells [J].
Aggarwal, BD ;
Calvi, BR .
NATURE, 2004, 430 (6997) :372-376
[2]   E2F mediates developmental and cell cycle regulation of ORC1 in Drosophila [J].
Asano, M ;
Wharton, RP .
EMBO JOURNAL, 1999, 18 (09) :2435-2448
[3]   Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element [J].
Austin, RJ ;
Orr-Weaver, TL ;
Bell, SP .
GENES & DEVELOPMENT, 1999, 13 (20) :2639-2649
[4]   Role for a Drosophila Myb-containing protein complex in site-specific DNA replication [J].
Beall, EL ;
Manak, JR ;
Zhou, S ;
Bell, M ;
Lipsick, JS ;
Botchan, MR .
NATURE, 2002, 420 (6917) :833-837
[5]   DNA replication control through interaction of E2F-RB and the origin recognition complex [J].
Bosco, G ;
Du, W ;
Orr-Weaver, TL .
NATURE CELL BIOLOGY, 2001, 3 (03) :289-295
[6]  
BOSCO G, 2002, REGULATION GENE EXPR, P107
[7]   Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1 [J].
Burke, TW ;
Cook, JG ;
Asano, M ;
Nevins, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (18) :15397-15408
[8]   Cell cycle control of chorion gene amplification [J].
Calvi, BR ;
Lilly, MA ;
Spradling, AC .
GENES & DEVELOPMENT, 1998, 12 (05) :734-744
[9]   The nuclear location and chromatin organization of active chorion amplification origins [J].
Calvi, BR ;
Spradling, AC .
CHROMOSOMA, 2001, 110 (03) :159-172
[10]   Transcriptional. repressor functions of Drosophila E2F1 and E2F2 cooperate to inhibit genomic DNA synthesis in ovarian follicle cells [J].
Cayirlioglu, P ;
Ward, WO ;
Key, SCS ;
Duronio, RJ .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (06) :2123-2134