Why environmental scientists are becoming Bayesians

被引:578
作者
Clark, JS [1 ]
机构
[1] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA
[2] Duke Univ, Dept Biol, Durham, NC 27708 USA
关键词
data modelling; Gibbs sampler; hierarchical Bayes; inference; MCMC; models; prediction;
D O I
10.1111/j.1461-0248.2004.00702.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Advances in computational statistics provide a general framework for the high-dimensional models typically needed for ecological inference and prediction. Hierarchical Bayes (HB) represents a modelling structure with capacity to exploit diverse sources of information, to accommodate influences that are unknown (or unknowable), and to draw inference on large numbers of latent variables and parameters that describe complex relationships. Here I summarize the structure of HB and provide examples for common spatiotemporal problems. The flexible framework means that parameters, variables and latent variables can represent broader classes of model elements than are treated in traditional models. Inference and prediction depend on two types of stochasticity, including (1) uncertainty, which describes our knowledge of fixed quantities, it applies to all 'unobservables' (latent variables and parameters), and it declines asymptotically with sample size, and (2) variability, which applies to fluctuations that are not explained by deterministic processes and does not decline asymptotically with sample size. Examples demonstrate how different sources of stochasticity impact inference and prediction and how allowance for stochastic influences can guide research.
引用
收藏
页码:2 / 14
页数:13
相关论文
共 63 条