Radiation driven capsules for fast ignition fusion

被引:17
作者
Slutz, SA
Herrmann, MC
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.1063/1.1530580
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The energy required to ignite compressed deuterium-tritium fuel decreases strongly with fuel density. Thermal radiation is an effective way of driving inertial fusion capsules to high density. The achievable fuel density increases with peak radiation temperature, since the ablation pressure depends strongly on the radiation temperature. Through a series of detailed numerical simulations, peak fuel densities have been calculated as a function of the peak radiation drive temperature. In these calculations, the time dependence of the radiation temperature has been optimized to obtain maximum density for each scaling point. These results are then used with the fast ignition scaling of Atzeni [S. Atzeni, Phys. Plasmas 6, 3316 (1999)] to obtain ignition energy as peak drive temperature. (C) 2003 American Institute of Physics.
引用
收藏
页码:234 / 240
页数:7
相关论文
共 17 条
[1]   Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel [J].
Atzeni, S .
PHYSICS OF PLASMAS, 1999, 6 (08) :3316-3326
[2]   Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets [J].
Hatchett, SP ;
Brown, CG ;
Cowan, TE ;
Henry, EA ;
Johnson, JS ;
Key, MH ;
Koch, JA ;
Langdon, AB ;
Lasinski, BF ;
Lee, RW ;
Mackinnon, AJ ;
Pennington, DM ;
Perry, MD ;
Phillips, TW ;
Roth, M ;
Sangster, TC ;
Singh, MS ;
Snavely, RA ;
Stoyer, MA ;
Wilks, SC ;
Yasuike, K .
PHYSICS OF PLASMAS, 2000, 7 (05) :2076-2082
[3]   A generalized scaling law for the ignition energy of inertial confinement fusion capsules [J].
Herrmann, MC ;
Tabak, M ;
Lindl, JD .
NUCLEAR FUSION, 2001, 41 (01) :99-111
[4]   RADIOACTIVELY INDUCED SUBLIMATION IN SOLID TRITIUM [J].
HOFFER, JK ;
FOREMAN, LR .
PHYSICAL REVIEW LETTERS, 1988, 60 (13) :1310-1313
[5]  
HOLIAN KS, 1984, LA10160MSV IC NAT TE
[6]   Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets [J].
Kemp, A ;
Meyer-ter-Vehn, J ;
Atzeni, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3336-3339
[7]   Experimental measurements of deep directional columnar heating by, laser-generated relativistic electrons at near-solid density [J].
Koch, JA ;
Key, MH ;
Freeman, RR ;
Hatchett, SP ;
Lee, RW ;
Pennington, D ;
Stephens, RB ;
Tabak, M .
PHYSICAL REVIEW E, 2002, 65 (01)
[8]   Ignition target design and robustness studies for the National Ignition Facility [J].
Krauser, WJ ;
Hoffman, NM ;
Wilson, DC ;
Wilde, BH ;
Varnum, WS ;
Harris, DB ;
Swenson, FJ ;
Bradley, PA ;
Haan, SW ;
Pollaine, SM ;
Wan, AS ;
Moreno, JC ;
Amendt, PA .
PHYSICS OF PLASMAS, 1996, 3 (05) :2084-2093
[9]   DEVELOPMENT OF THE INDIRECT-DRIVE APPROACH TO INERTIAL CONFINEMENT FUSION AND THE TARGET PHYSICS BASIS FOR IGNITION AND GAIN [J].
LINDL, J .
PHYSICS OF PLASMAS, 1995, 2 (11) :3933-4024
[10]   BETA-ENERGY DRIVEN UNIFORM DEUTERIUM TRITIUM ICE LAYER IN REACTOR-SIZE CRYOGENIC INERTIAL FUSION-TARGETS [J].
MARTIN, AJ ;
SIMMS, RJ ;
JACOBS, RB .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (03) :1885-1888