An integrative classification of vegetation in China based on NOAA AVHRR and vegetation - climate indices of the Holdridge life zone

被引:61
作者
Pan, Y [1 ]
Li, X
Gong, P
He, C
Shi, P
Pu, R
机构
[1] Beijing Normal Univ, Inst Resource Sci, Key Lab Environm Change & Nat Disaster, Beijing 100875, Peoples R China
[2] Univ Calif Berkeley, Ctr Assessment & Monitoring & Forest & Environm R, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1080/01431160110115816
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We developed a method for integrated analysis of multi-source data for vegetation classification at the continental scale. and applied it to China. Multi-temporal 1 km NOAA Advanced Very High Resolution Radiometer (AVHRR) Holdridge's life zone system and its vegetation-climate classification indices such as bio-temperature BT). potential evapotranspiration rate (PER) and precipitation (P) correspond better with undisturbed vegetation I) pes all over er the world. We generated 1 km images of BT, PER and P using the quantitative model of Holdridge's life zone system with climate data of China. They were processed with principal component analysis (PCA) to produce an ancillary image. This image and 12 monthly images of maximum Normalized Difference Vegetation Index (NDVI) values at 1 km resolution were input into an ISODATA clustering algorithm to carry out a vegetation classification. As a result, 47 information classes were obtained. Seasonal NDVI parameters derived through time series analysis (TSA) of the NDVI temporal profile and a set of quantitative vegetation-climate parameters of Holdrige's life zone model were synthetically utilized to label information classes. In this method, climate, terrain and spectral data were integrated: separability between vegetation types and classification accuracy were improved. A total of 47 land cover classes were obtained. Validation data collected in the field using GPS indicated that an overall classification accuracy of 71.4% was reached, an 8.1% improvement to the map derived only from multi-temporal NDVI images, To compare our results with the International Geosphere-Biosphere Programme IGBP) DISCover land cover dataset. we aggregated our land cover classes according to the IGBP classification S stem. The overall classification accuracy for the aggregated vegetation map from Our classification results improved IGBP land cover map from 75.5% to 86.3%.
引用
收藏
页码:1009 / 1027
页数:19
相关论文
共 52 条
  • [1] Forest classification of Southeast Asia using NOAA AVHRR data
    Achard, F
    Estreguil, C
    [J]. REMOTE SENSING OF ENVIRONMENT, 1995, 54 (03) : 198 - 208
  • [2] [Anonymous], EOS SCI STRATEGY EAR
  • [3] Belward A., 1996, 13 IGBPDIS
  • [4] ACCURACY OF THE AVHRR VEGETATION INDEX AS A PREDICTOR OF BIOMASS, PRIMARY PRODUCTIVITY AND NET CO2 FLUX
    BOX, EO
    HOLBEN, BN
    KALB, V
    [J]. VEGETATIO, 1989, 80 (02): : 71 - 89
  • [5] BROWN JF, 1993, PHOTOGRAMM ENG REM S, V59, P977
  • [6] Chang H., 1989, ACTA PHYTOECOLOGICA, V13, P197
  • [7] Chang HS, 1993, ACTA PHYTOECOLOGICA, V17, P97
  • [8] Land cover mapping of large areas from satellites: status and research priorities
    Cihlar, J
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) : 1093 - 1114
  • [9] Land cover classification with AVHRR multichannel composites in northern environments
    Cihlar, J
    Ly, H
    Xiao, QH
    [J]. REMOTE SENSING OF ENVIRONMENT, 1996, 58 (01) : 36 - 51
  • [10] Classification by progressive generalization: A new automated methodology for remote sensing multichannel data
    Cihlar, J
    Xia, QH
    Chen, J
    Beaubien, J
    Fung, K
    Latifovic, R
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (14) : 2685 - 2704